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FOREWORD

In the course of fuzzy technological development, fuzzy graph theory was
identified quite early on for its importance in making things work. Two very
important and useful concepts are those of granularity and of nonlinear ap-
proximations. The concept of granularity has evolved as a cornerstone of
Lotfi A.Zadeh’s theory of perception, while the concept of nonlinear approx-
imation is the driving force behind the success of the consumer electronics
products manufacturing.

It is fair to say fuzzy graph theory paved the way for engineers to build
many rule-based expert systems. In the open literature, there are many
papers written on the subject of fuzzy graph theory. However, there are
relatively books available on the very same topic. Professors’ Mordeson
and Nair have made a real contribution in putting together a very com-
prehensive book on fuzzy graphs and fuzzy hypergraphs. In particular, the
discussion on hypergraphs certainly is an innovative idea.

For an experienced engineer who has spent a great deal of time in the lab-
oratory, it is usually a good idea to revisit the theory. Professors Mordeson
and Nair have created such a volume which enables engineers and design-
ers to benefit from referencing in one place. In addition, this volume is a
testament to the numerous contributions Professor John N. Mordeson and
his associates have made to the mathematical studies in so many different
topics of fuzzy mathematics.

The Center for Research in Fuzzy Mathematics and Computer Science,
under the direction of Dr. John N. Mordeson, is one of the earliest of these
establishments in the world. The scholarly and academic products that
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have grown out from the center certainly are very impressive indeed, both
in terms of quality as well as quantity.

In a sense, fuzzy mathematics is a generalization of traditional mathe-
matics. In this regard, I have no doubt that Professor John N. Mordeson
and his associates will be recognized as important leading researchers and
the Center for Research in Fuzzy Mathematics and Computer Science will
have its place in the annals of fuzzy theory as an important innovation and
institution.

Paul P. Wang
Duke University



PREFACE

In 1965, L. A. Zadeh introduced the concept of a fuzzy subset of a set
as a way for representing uncertainty. Zadeh’s ideas stirred the interest of
researchers worldwide. His ideas have been applied to a wide range of sci-
entific areas. Theoretical mathematics has also been touched by the notion
of a fuzzy subset. We consider two areas of mathematics here.

The book deals with fuzzy graph theory and fuzzy hypergraph theory.
The book is based on papers that have appeared in journals and conference
proceedings. The purpose of this book is to present an up to date account
of results from these two areas and to give applications of the results. The
book should be of interest to research mathematicians and to engineers and
computer scientists interested in applications. For the purpose of a com-
prehensive presentation of fuzzy graph theory, we include not only much
of what appears in volume 20 of this series, but also a greatly expanded
version.

In Chapter 1, basic concepts of fuzzy subset theory are given. The notion
of a fuzzy relation and its basic properties are presented. The concept of
a fuzzy relation is fundamental to many applications given, e. g., cluster
analysis and pattern classification. Chapter 1 is based primarily on the
work of Rosenfeld and Yeh and Bang.

Chapter 2 presents many concepts and theoretical results of fuzzy graphs.
The material from this chapter is the result of the work of many authors
including that of the authors of this book. However much of the work is
an outgrowth of the ideas of Rosenfeld. We acknowledge the authors at
the beginning of each section. This chapter deals with the fuzzification of
such concepts as paths, connectedness, bridges, cut vertices, trees, forests,
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cut sets, chords, cotrees, twigs, 1-chains, cocycles, line graphs, intersection
graphs, and interval graphs.

In Chapter 3, applications of fuzzy graph theory are presented. Here
again many of the results of this chapter are based on the work of Rosenfeld
and Yeh and Bang. Applications of fuzzy graphs to cluster analysis and
database theory are presented. Applications of fuzzy graphs to the problem
concerning group structure are also given.

In Chapter 4, we present theoretical aspects of fuzzy hypergraph theory
with applications to portfolio management, managerial decision making
with an example to waste management, and to neural cell-assemblies. The
results of this chapter are taken mainly from the work of Goetschel and
his coauthors. We have reorganized Goetschel’s work and added some ex-
amples. This chapter deals with the concepts of fuzzy transversals of fuzzy
hypergraphs, colorings of fuzzy hypergraphs, and intersecting fuzzy hyper-
graphs. In 1982, Z. Pawlak introduced the idea of a rough set in order to
provide a systematic approach for the study of indiscernibility of objects.
We show how (fuzzy) hypergraphs and rough sets are related in such a way
that ideas may be carried back and forth between the two areas.

John N. Mordeson
Premchand S. Nair
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1
FUZZY SUBSETS

In 1965, Lofti Zadeh published his seminal paper “Fuzzy Sets” [11] which
described fuzzy set theory and consequently fuzzy logic. The purpose of
Zadeh'’s paper was to develop a theory which could deal with ambiguity
and imprecision of certain classes or sets in human thinking, particularly
in the domains of pattern recognition, communication of information, and
abstraction. This theory proposed making the grade of membership of an
element in a subset of a universal set a value in the closed interval [0,1] of
real numbers.

Zadeh's ideas have found applications in computer science, artificial in-
telligence, decision analysis, information science, system science, control en-
gineering, expert systems, pattern recognition, management science, opera-
tions research, and robotics. Theoretical mathematics has also been touched
by fuzzy set theory. The ideas of fuzzy set theory have been introduced into
topology, abstract algebra, geometry, graph theory, and analysis.

Before introducing the concept of a fuzzy subset, we review briefly some
basic properties of sets, relations, and functions. We assume the reader is
familiar with the basic ideas from set theory. Let S be a set and let A and
B be subsets of S. We use the notation AU B and AN B to denote the
union and intersection of A and B, respectively. We also let B \ A denote
the relative complement of A in B. The (relative) complement of A in S,
S\ A, is sometimes denoted by A° when S is understood. Then it is easily
verified that (AU B)¢ = A°N B¢ and (AN B)¢ = A°U B¢. These equations
are known as DeMorgan’s Laws.

Let = be an element of S. We write £ € A if z is an element of A.
otherwise we write z ¢ A. We use the notation A C B or B D A to denote
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that A is a subset of B. If A C B, but there exists = € B such that z ¢ A,
then we write A C B or B D A and say that A is a proper subset of B. The
cardinality of A is denoted by |A| or card(A). The power set of A, written
p(A), is defined to be the set of all subsets of 4, i. e., p(4) = {U | U € A}.
A partition of S is a set P of nonempty subsets of S such that VU,V € P,
either (1) U =V or UNV =0, the empty set, and (2) S =UleJP U.

We let N denote the set of positive integers, Z the set of integers, and R
the set of real numbers.

Let X and Y besets. If £ € X and y € Y, then (z,y) denotes the ordered
pair of z with y. The Cartesian cross product of X with Y is defined to be
the set {(z,y) | £ € X,y € Y} and is denoted by X x Y. We occasionally
write X° for X x X. In fact, for n € N;n > 2, we let X™ denote the set
of all ordered n-tuples of elements from X. A relation R of X into Y is a
subset of X x Y. Let R be such a relation. Then the domain of R, written
Dom(R), is {x € X | 3y € Y such that (z,y) € R} and the image of R,
written Im(R), is {y € Y | 3z € X such that (z,y) € R}. If (z,y) € R, we
sometimes write zRy or R(z) = y. If R is a relation from X into X, we say
that R is a relation on X. A relation R on X is called

(1) reflexive if Vz € X, (z,2) € R;
(2) symmetric if Vz,y € X, (z,y) € R implies (y,z) € R;
(3) transitive if Vz,y,2z € X, (z,y) and (y, 2) € R implies (z,2) € R.

A relation R on X which is reflexive, symmetric, and transitive is called
an equivalence relation. If R is an equivalence relation on X, we let [z]
denote the equivalence class of z with respect to R. Hence [z] = {a € X |
aRz}. If R is an equivalence relation on X, then {[x] | z € X} is a partition
of X. Also if P is a partition of X and R is the relation on X defined by
Vz,y € X, (z,y) € Rif 3U € P such that z,y € U, then R is an equivalence
relation on X whose equivalence classes are exactly those members of P.

Let R be a relation on X. Then R is called antisymmetric if Vz,y € X,
(z,y) € R and (y,z) € R implies z = y. If R is a reflexive, antisymmetric,
and transitive relation on X, then R is called a partial order on X and X
is said to be partially ordered by R.

Let R be a relation of X into Y and T a relation of Y into a set Z. Then
the composition of R with T, written T o R, is defined to be the relation
{(z,2) € X x Z | 3y € Y, such that (z,y) € R and (y,2) € T}.

Suppose that f is a relation of X into Y such that Dom(f) = X and
Vz,z' € X, z = z’ implies f(z) = f(z'). Then f is called a function of X
into Y and we write f : X — Y. Let f be a function of X into Y. Then f
is sometimes called & mapping and f is said to map X into Y. If Vy € Y,
3z € X such that f(z) =y, then f is said to be onto Y or to map X onto
Y. If Vr,2' € X, f(z) = f(z') implies that z = 2/, then f is said to be
one-to-one and f is called an injection. If f is a one-to-one function of X
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onto Y, then f is called a bijection. If g is a function of Y into a set Z,
then the composition of f with g, g o f, is a function of X into Z which
is one-to-one if f and g are and which is onto Z if f is onto Y and g is
onto Z. If Im(f) is finite, the we say that f is finite-valued. We say that an
infinite set X is countable if there exists a one-to-one function of X onto
N; otherwise we call X uncountable.

We now introduce the notion of a fuzzy subset of a set S. A fuzzy subset
of S is a mapping g : S — [0,1], where [0,1] denotes the set {t € R |
0 <t < 1}. We think of u as assigning to each element x € S a degree of
membership, 0 < u(z) < 1. Let 4 be a fuzzy subset of S. We let u* = {z €
S | pu(z) >t} for all t € [0,1]. The sets u* are called level sets or t-cuts of
u. We let supp(p) = {z € S | p(z) > 0}. We call supp(u) the support of
w. A fuzzy set p is nontrivial is supp(p) # 0. The set of all fuzzy subsets
of S is denoted by and is called the fuzzy power set of S. Throughout we
use the notation V for supremum and A for infimum. Let A be the function
of Fp(S) into [0, 1] defined by h(u) = V {u(z) | = € S}Vu € Fp(S). Then
h(u) is called the height of p.

Definition 1.1 Let p,v be two fuzzy subsets of S. Then
(1) p Cvif p(z) S v(z) forallz € S,

(2) pCvifu(z) <v(z) for all z € S and there erists at least one x € S
such that p(z) < v(z),

(3) p=v if u(z) =v(z) forallz € S.

Definition 1.2 Let u,v be any two fuzzy subsets of S. Then pU v is the
fuzzy subset of S defined by

(ruv)(z)=p(z) Vv(z) forallz € S
and pNv is the fuzzy subset of S defined by
(kNv)(z) = p(z) Av(z) for allz € S.

Definition 1.3 Let p be any fuzzy subset of S. Then u° is the fuzzy subset
of S defined by
p(z) =1—p(z) forallz € S.
If S is a collection of fuzzy subsets of S, we define the fuzzy subset () ¢

ces
(intersection) of S by Vz € S, ([ &)(z) = A{é(z) | £ € S} and the ftfzzy
£es

subset |J & (union) of Sby V€ S, (U £)(z) = V{&(z) | £ € S}.
€es £es
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Let A be a subset of S. Define x4 : § — [0,1] by x4(x) =1ifz € A and
xa(z) =0if £ € S\ A. Then x, is called the characteristic function of A
in S. Now xg(z) = 1 for all z € S and xp(z) = 0 for all z € S. Let p,v,
and £ be fuzzy subsets of S. Then we have the following properties.

() purv=vup (9 pU@UE)=(pUr)Ué
@)pnv=vnp (10) pn(wNE) =(pNv)NE

@ puUxe=p (A)pnEué)=(Env)uEné)
@ernxe=x¢ (12) pu(@né)=(puUr)N(pUé)
() pUxs=xs (13) (rUV)*=pnv°

®) pnxs=p  (14) (rkNv)=p°Ure

(M pUp=gp (15) (p) =p

@) pnp=p

It is important to note that the properties uNu° = x4 and pUp® = x5 do
not hold in general. In logic, the former property is known as the law of con-
tradiction while the latter is known as the law of the excluded middle. Ad-
ditional properties involving fuzzy subsets can be found in (1,2,4,5,6,7,14].

1.1 Fuzzy Relations

Much of the material in the first three sections is based on the work of
Rosenfeld, [8]. Let S and T be two sets and let x and v be fuzzy subsets
of S and T, respectively. Then a fuzzy relation p from the fuzzy subset u
into the fuzzy subset v is a fuzzy subset p of S x T such that p(z,y) <
u(x) Av(y),Vz € S and y € T. That is, for p to be a fuzzy relation, we
require that the degree of membership of a pair of elements never exceed
the degree of membership of either of the elements themselves. Also, the
restriction p(z,y) < p(z) A v(y),vz € S and y € T allows p* to be a
relation from u* into v* for all t € [0,1] and for supp(p) to be a relation
from supp(x) into supp(v).

There are three special cases of fuzzy relations which are extensively
found in the literature:

(1) S =T and p = v. In this case, p is said to be a fuzzy relation on p.
Note that p is a fuzzy subset of S x S such that p(z,y) < u(z) Au(y).

(2) p(z) =1.0for all z € S and v(y) = 1.0 for all y € T In this case, p is
said to be a fuzzy relation from S into T.

(3) S=T,u(z) =1.0for all z € S and v(y) = 1.0 for all y € T. In this
case, p is said to be a fuzzy relation on S.

There are many applications in which a fuzzy relation on a fuzzy subset
is quite useful. Also, any result we obtain is clearly true for fuzzy relations
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on a set. We devote this and next two sections of this chapter to fuzzy
relations on a fuzzy subset. The last section of this chapter is devoted to
the study of cases 2 and 3.

Let p be a fuzzy relation on u. Then p is called the strongest fuzzy relation
on u if and only if for all fuzzy relations w on p,Vz,y € S,w(z,y) <
p(z,y). The converse problem may also arise in practice. That is, we know
the strength of the pairs and we want to compute the minimum strength
required for the elements themselves. For a given fuzzy subset p of S x S,
the weakest fuzzy subset p of S on which p is a fuzzy relation is defined
by u(z) = V{p(z,y) V p(y,z)|y € S} for all z € S. That is, if v is a fuzzy
subset of S and p is a fuzzy relation on v, then p C v.

We now introduce some important operations on fuzzy relations.

Definition 1.4 Let p : S x T — [0,1] be a fuzzy relation from a fuzzy
subset p of S into a fuzzy subset v of T and w : T x U — [0,1] be a
fuzzy relation from a fuzzy subset v of T into a fuzzy subset £ of U. Define
pow:SxU —[0,1] by

pow(z,z) = V{p(z.y) Aw(y,2)ly € T}
for allz € S,z € U. Then pow is called the composition of p with w.

Proposition 1.1 Let p, u, @ and v as defined in Definition 1.4. Then pow
s a fuzzy relation from p into §.

Proof. Let z € S,y € T, and 2 € U. Then p(z,y) < p(z) A v(y) and
@(y,z) < v(y) AE(2). Hence p(z,y) A @(y, z) < p(z) A v(y) Aé(z). Thus
(powm)(z,z) =V{p(z,y) ANw(y,2) |y € T} < p(z) NE(2). B

We see that the composition of p with @ is a fuzzy relation from a fuzzy
subset u of S into a fuzzy subset £ of U. A closer look at the definition of the
composition operation reveals that po= can be computed similar to matrix
multiplication, where the addition is replaced by V and the multiplication
is replaced by A. Since composition is associative,we use the notation p? to
denote the composition pop, p* to denote p*~1op, k > 1. Define p>(z,y) =
V{p*(z,y)|k = 1,2,...} for all z,y € S. Finally, it is convenient to define
P°(z,y) = 0if = # y and p°(x,y) = u(z) otherwise, for all z,y € S.We have
introduced three binary operations. We now introduce a unary operation
on a fuzzy relation. Given a fuzzy relation p on a fuzzy subset u of S, define
the fuzzy relation p° on p by p%(z,y) =1 — p(z,y) for all z,y € S.

Definition 1.5 Let p : S x T — [0,1] be a fuzzy relation from a fuzzy
subset y of S into a fuzzy subset v of T. Define the fuzzy relation p~! :
T xS —[0,1] of v into u by p~(y,z) = p(z,y) for all (y,z) € T x S.
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Theorem 1.2 Let 7,7, p and w be fuzzy relations on a fuzzy subset u of
a set S. Then the following properties hold.

(1) pUum=wUp

2) pNnw=wnNp

@) p=(p°)°

4) rU(pUw)=(TUp)Uw

(6) mN(pNw)=(rNp)Nw

(6) mo(pow)=(mop)ow

(7) 70 (pUm) = (r N p) U (N )

(8) TU(pNw) =(TUp)N(TUwm)

9) (pUm)* = =N p°

(10) (pNw)® =@ Up°

(11) For all t € [0,1], (pUw)t = pt Ut
(12) Forall t € [0,1],(pNw) =p* N&*
(13) Forallt € [0,1],(pow)t D ptow? and if S is finite, (pow)? = ptow?.
(14) frCpandr7CwthenTUT CpUw
(15) frCpandr CwthenTNTCpNw

(16) frCpandrCwthenTor Cpow

Proof. We provide the proofs for (13) and (16). Let =,z € S.

(13) (z,2) € (pow)t & (pow)(xz,2) >t « 3y € S such that p(z,y) A
w(y,z) >t & Jy € S such that p(z,y) > t and w(y,2z) >t & 3y e S
such that (z,y) € p' and (y,2) € @* & (z,2) € p' o w'. The implication
becomes an equivalence if S is finite.

(16) (r o m)(,2) = V{(z,9) A7(3,2) |y € §} < V{p(z,5) Aw(3,7) |
yeS}=(pow)(z,z)forallz,zc S. M

1.2 Fuzzy Equivalence Relations

In this section p and w are fuzzy relations on a fuzzy subset u of S. It is
quite natural to represent a fuzzy relation in the form of a matrix. We now
use the matrix representation of a fuzzy relation to explain the properties of
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a fuzzy relation. In particular, we shall use the term “diagonal” to represent
the principal diagonal of the matrix.

We call p reflerive (on p) if p(z,z) = pu(z) for all z € S. If p is reflexive,
on xg, we call p reflezive. If p is reflexive on g, then p(z,y) < u(z) Ap(y) <
w(z) = p(z, z) and it follows that “any diagonal element of p is larger than
or equal to any element in its row”. Similarly, “any diagonal element is
larger than or equal to any element in its column”. Conversely, given a
fuzzy relation p on p such that “any diagonal element is larger than or
equal to any element in its row and column”, define a fuzzy subset v of S
as v(z) = p(z,z),Vz € S. Then v is the weakest fuzzy subset of S such
that p is a fuzzy relation on v. Further, p is reflexive on v.

Fuzzy reflexive relations have some interesting algebraic properties.

Theorem 1.3 Let p and @ be fuzzy relations on a fuzzy subset p of S.
Then the following properties hold.

(1) If p is reflexive, w C wopand w C pow.
(2) If p is reflexive, p C p2.
(3) If pis reflexive, P C pC P2 C 3 C ... C p™.

(4) If p is reflexive, p°(z,z) = p(z,z) = p*(z,z) = p3(z,2) = ... =
p=(z,x) = p(z),Vz € S.

(5) If p and @ are reflexive, so is p o w and w o p.

(6) If p is reflexive, then p* is a reflexive relation on u* for all ¢ € [0.1].

Proof. Let z,z € S.

(1) (o @)(z,2) = V{p(z,5) A@(,2) | y € S} > p(z,2) Aw(z, 2) =
w(z) Nw(z, z). Since w(z, z) < p(z) Ap(z),pu(z) Aw(z, z) = w(z, 2). Thus
@ C pow. Similarly, w C w o p.

(2) Choose @ as p in (1).

(3) Choose w as p, p?,p> and so on in (1).

(4) Note that p(z,z) = p(z),Vz € S. Assume that p™(z,z) = p(z),Vz €
S. Now for all z € S, p"*1(z,z) = V{p(z,y) A p"(y,2) | y € S} < V{p(z)A
u(z) | y € S} = p(z) and p™*1(z,z) = V{p(z,y) A p*(y,2) | y € S} >
p(z,z) A p™(z,z). Hence p"+1(z,z) = p(z),Vz € S.

(5) (pow)(z, 2) = V{p(z, y)Aw(y,2) | y € S} < V{u(&)Au(z) | y € S} =
i(z) and (pow)(z,2) = V{p(z,y) Aw(y,z) | ¥ € S} > plz,x) Aw(a.7) =
u(z) A p(z) = p(z). The proof that @ o p is reflexive is similar.

(6) If z € p, then p(z,z) = p(z) > t and thus (z,z) € pt.

We call p symmetric if p(z,y) = p(y, z), for all =,y € S. In other words,
p is symmetric if the matrix representation of p is symmetric (with respect
to the diagonal).
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Theorem 1.4 Let p and @ be fuzzy relations on a fuzzy subset p of S.
Then the following properties hold.

(1) If p and w are symmetric, then p o @ is symmetric if and only if
pOTW=wWOPpP.

(2) If p is symmetric, then so is every power of p.

(3) If p is symmetric, then p' is a symmetric relation on u! for all ¢t €
[0,1].

Proof. (1) (pow)(z,2) = (po@)(z,z) & V{p(z,y) Aw(y,2) |y € S} =
V{p(z,y) Aw(y,z) |y € S} &

V{p(z,y)Aw(y, 2) | y € S} = V{w(y, 2)Ap(2,y) | y € S} & pow = wop.

(2) Assume that p™ is symmetric for n € N. Then p"*1(z, z) = V{p(z, y)A
p™(y.2) |y € S} = V{p(y,z) A p™(2,9) | y € S} = V{p™(2,9) Ap(y,2) | y €
S} = p™t(z,z).

(3) Let 0 < t < 1. Suppose (z,z) € pt. Then p(z,z) > t. Since p is
symmetric, p(z,z) > t. Thus (2,z) € p*. B

We call p transitive if p?> C p. It follows that p* is transitive for any
fuzzy relation p.

Theorem 1.5 Let m,p and w be fuzzy relations on a fuzzy subset p of S.
Then the following properties hold.

(1) If p is transitive and 7 C p,w C p, then Tow C p.

(2) If p is transitive, then so is every power of p.

(3) If p is transitive, w is reflexive and @ C p, then pow = wo p = p.
(4) If p is reflexive and transitive, then p? = p.

(5) If p is reflexive and transitive, then p® C p=p? = p3 = ... = p™.
(6) If p and w are transitive and p o @ = w o p, then p o w is transitive.

(7) If p is symmetric and transitive, then p(z,y) < p(z,z) and p(y,z) <
p(z,z), for all z,y € S.

(8) If p is transitive, then for any 0 <t < 1, p' is a transitive relation on
pt.
Proof. (1) (row)(z, 2) = V{n(z,y)Aw(v, 2) | y € S} < V{p(z,5)Ar(y,2) |
y € S} = p%(z,2) < p(x.2). Hence o w C p.
(2) Assume that p™ o p™ C p™. Then p™*t! o pnt! = p2n+2 — j2n o 2 C
pn op= pn.+]'
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(3) By (1), taking 7 to be p, pow C p. (pow)(z, 2) = V{p(z,y)Aw(y, 2) |
y € S} > Vp(z,2) ANw(z,z) = p(x,2) A u(z) = p(z,2). Hence pow = p.
Similarly, wo p = p.

(4) Choose @ as p in (3).

(5) Note that p = p? by (4). Assume that p™ = p"*+!, for n > 1. Hence
p*op=p*ttop Thatis, p"t! = pn*2.

(6) (pow)o(pow) = po(wop)ow = po(pow)ow = p?ow? C pow.
Hence p o w is transitive.

(7) Since p is transitive, po p C p. Hence (p o p)(z,z) < p(z,z). That
is, V{p(z,y) A p(y,z) | y € S} < p(z, z). Since p is symmetric, V{p(z,y) A
p(z.y) | y € S} < p(z,z). Thus p(z,y) < p(z,z). Since p is symmetric,
p(y,z) < p(z,T).

(8) Let 0 < t < 1.Let (z,y), (v, 2) € p*. Hence p(z,y) > t and p(y, z) > t.
Therefore, p(z,2) = V{p(z,w) A p(w,2) | w € S} > p(z,y) A p(y,2) > t.
Thus (z, 2) € p*.

]

A fuzzy relation p on S which is reflexive, symmetric, and transitive is
called a fuzzy equivalence relation on S.

1.3 Pattern Classification

Let S be a set whose elements we think of as patterns. A fuzzy classification
pon S is a symmetric fuzzy relation on S such that p(z,z) =1forallz € S.

Since p is reflexive, p C p? C p? C ... C p™. Note that p™ is a fuzzy
equivalence relation. So for any 0 < t < 1, (p°)! is an equivalence relation
on S. Let P! the partition of S induced by the equivalence relation (p>)?.

Theorem 1.6 Let p be a fuzzy relation on S. Define 6 from S x S into R
by Vz,y € S,6(z,y) =1 — p>(z,y). ThenVz,y,2€ S :

(1) é(z,y) =0ifand only if z = y.
(2) b(z,y) = 6(y, ).
@) é(z,2) < é(z,y) + 6(y, 2).

That is, § is a metric on S.
Proof. Let z,y,z € S.

(1) p>(z,y) =1 if and only if £ = y < 1 — p*=(z,y) = 0 if and only if
T=y<« é(z,y) =0ifand only if z = y.

(2) b(z,y) =1 - p=(z,y) =1 - p™(y,z) = §(y, ).

(8) p*™ is transitive = p™(z,2) > p™(z,y) A p™(y.2) > p™=(z,y) +
P2y, 2)—1= p>®(z,2) =12 p®(z,y) = 1+p=(y.2) =1 = 1-p>™(z,2) <
1- poo(x’y) +1- poo(y, Z) = 5(.'13, Z) < 6(3:7 y) + 6(3/; Z). L]
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Example 1.1 Let S = {z,z2,23,24,25} and define the symmetric fuzzy
relation p on S as follows:

I T2 I3 T4 Is
I 1.0

2| 0.8 1.0

z3| 00 04 1.0

4 | 0.1 00 0.0 1.0

z5s 102 09 00 05 10

Now p>® = p3 is given by

Iy 2 I3 T4 ZIs
I 1.0

z2 | 0.8 1.0

z3 | 0.4 04 1.0

z4 | 0.5 05 04 1.0

z5 | 08 09 04 05 1.0

and we have the partitions

{{.’1:1,.’1:2,173,.‘1:4,1135}} sz <t< 04
{{z1.z2, 24,25}, {x3}} f04<t<05
P'=( {{z1,72,75}, {74}, {z3}} if0.5<t<0.8

{{z1}, {z2, 25}, {za}, {z3}} f0.8<t<09
{{z1}, {z2}, {zs}, {za}, {z3}} f09<t<10

Thus there are many partitions possible and depending upon the level of
detail, one could classify the patterns based on equivalence relations. Note
that if s > t, then P° is a refinement of Pt.

We now present an experiment done by Tamura, Higuchi and Tanaka
[9]. Portraits obtained from 60 families were used in their experiment, each
family of which was composed of between four and seven members. They
chose portraits because even though parents may not resemble each other,
they may be connected through their children, and consequently they could
classify the portraits into families. They first divided the 60 families into
20 groups, each of which was composed of 3 families. Each group was,
on the average, composed of 15 members. The portraits of each group
were presented to a different student to assign the values of the subjective
similarity p(z,y) between all pairs on a scale of 1 to 5. They used the 5 rank
representation instead of a continuous value representation because it has
been proved that human beings cannot make distinctions into more than 5
ranks. Twenty students were involved in the experiment. Since the levels of
the subjective values are different according to individuals, the threshold
was determined in each group as follows. As they lowered the threshold,
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the number of classes decreased. Hence, under the assumption that the
number of classes ¢ to be classified was known to be 3, while lowering
the threshold they stopped at the value which divided the patterns into 3
classes (collection of the patterns composed of more than 2 patterns that
have a stronger relation than A with each other) and some nonconnected
patterns. However, when some p(z,y) are equal, sometimes there is no
threshold by which the patterns can be divided into exactly ¢ given classes.
In such a case, they divided them into exactly c classes by stopping the
threshold at the value where the patterns are divided into less than c classes
and separating some connections randomly that have a minimum p(z,y)
greater than the threshold. The correctly classified rates, the misclassified
rates, and the rejected rates of 20 groups were within the range of 50-94
percent, 0-33 percent, and 0-33 percent, respectively, and they obtained
the correctly classified rate 75 percent of the time, the misclassified rate
13 percent, and the rejected rate 12 percent as the averages of the 20
groups. Here, since the classes made in this experiment have no label, they
calculated these rates by making a one-to-one correspondence between 3
families and 3 classes, so as to have the largest number of correctly classified
patterns.

We see that Tamura, Higuchi and Tanaka [9] have studied pattern classi-
fication using subjective information and performed experiments involving
classification of portraits. The method of classification proposed here is
based on the procedure of finding a path connecting 2 patterns. Therefore,
this method may be combined with nonsupervised learning and may also
be applicable to information retrieval and path detection.

1.4 Similarity Relations

In this section we will show that the concept of a similarity relation intro-
duced by Zadeh [13] is derivable in much the same way as a fuzzy equiv-
alence relation. Throughout this section we shall be dealing with a fuzzy
relation on a set. The results in this section are from [9).

Definition 1.6 Let p be a fuzzy relation on a set S. We define the followring
notions:

(1) p is e-reflexive if V = € S, p(z,z) > €, where € € [0,1].

(2) p is irreflexive if Vz € S, p(z,z) = 0.

(3) p is weakly reflexive if for all z, y in S and for all € € [0,1], p(z,y)
=e=p(z.2) > e

Note that the definition of a reflexive relation as a 1-reflexive relation
coincides with the definition of a reflexive relation in Section 1.2.
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Lemma 1.7 If p is a fuzzy relation from S into T, then the fuzzy relation
po p~! is weakly reflezive and symmetric.

Proof. (po p~')(z,2') = V{p(z,y) A p~'(y,7') | y € T} < V{p(z,y) A
p(z,y) |y €T} =

V{p(z,y) Ap~ (v, z) |y € T} = (po p~')(z, ). Hence po p~' is weakly
reflexive.

(pOf“)(w, ') = v{p(z,y) Ap~ (. 2) | y € T} = V{p~ ! (y,2) Ap(z',y) |
yeT

= V{p(z',y) A p (y,%) | y € T} = (pop~*)(z',z). Thus pop~ is
symmetric. Il

Let p be a weakly reflexive and symmetric fuzzy relation on S. Define a
family of non-fuzzy subsets F* as follows:

FP={K CS|(0 < e <1)(Vz € S|z € K & (Vz' € K)[p(z,2') >
el}.

Hence if we let

Ff ={K C S|(Vz € §)[z € K & (Vz' € K)[p(z,2') 2 €]},
then we see that €; < e2 = Ff, < Ff where “x” denotes a covering
relation, i.e., every element in F¥ is a subset of an element in F¥.

A subset J of S is called e-complete with respect to p if V z,2’ €
J,p(z,2') > €. A mazimal e-complete set is one which is not properly
contained in any other e-complete set.

Lemma 1.8 F? is the family of all mazimal e-complete sets with respect
topfor0<e<1. M

Proof. Let K € F? and z,z” € K. Then there exists 0 < ¢ < 1 such that
vi' € K, p(z,z') > €. Thus p(z,z”) > e. Hence K is e-complete. Let J
be subset of X such that K C J and J is ¢-complete. Let z € J. Since J
is e-complete, ¥z’ € K, p(z,2') > €. Since K € F, z € K. Thus J C K.
Hence K is maximal. Now let K be a maximal e-complete set. Let x € X.
Then clearly z € K & V2’ € K, p(z,z') > €. Thus K € F?.

Lemma 1.9 Whenever p(z,z’') > 0, there is some e-complete set K € F?
such that {z,2’} C K. R

Proof. If z = z’, then {z} is certainly e-complete for € = ug(z, z). Suppose
that £ # z'. Then since p(z,z’) = p(z',z) by symmetry, and p(z,z) >
p(x,z’) and p(z’,z') > p(z,z’) by weak reflexivity, we see that {z,z’} is
e-complete, where € = p(z,z’). Denote by C. the family of all e-complete
sets C which contain {z,z’}. Then C; is not empty since {z,z'} € C.. It
follows easily by Zorn’s lemma that C¢ has a maximal element K. This
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element is also maximal in the family of all e-complete sets since any set
including K must also include {z,z'}. Hence K € F? by Lemma 1.8. I

We note that sometimes a subclass of F”, satisfying the condition of
Lemma 1.9, will cover the set S. For example, let p be the fuzzy relation
on S = {a,b,¢,d,e, f} given by the following matrix.

a b c d e f
1.0 03 04 00 04 03
03 10 02 03 00 04
04 02 1.0 03 0.5 0.0
00 03 03 1.0 00 0.0
04 00 05 00 10 00
03 04 00 00 00 1.0

N 0 /0O O

We see that the family consisting of the three maximal complete sets
{a,b, f}, {b,¢c,d}, and {a,c,e} satisfy the condition of Lemma 1.9, but it
does not contain the maximal complete set {a, b, c}. Note for example that
{a,b, f} is maximal €’-complete V 0 < ¢’ < e where € = 0.3 since p(a,d) =
p(b,e) = p(f,c) = 0. We have

{{a}, {6}, {c}, {d}, {e}. {f}} if05<e<1
{{c, e}, {a}, {b},{d}, {f}}} if04<e<05
Ff =< {{a,c e}, {b, f},{d}} if0.3<e<04

{{a,b, f},{a,c,e},{b,d},{c,d}} if02<€<0.3
{{a,b,¢c},{b,c,d},{a,b, f},{a,c,e}} f0<e<02

We also note that p is not transitive: p(b,c) = 2 2 .3=(3A4) V(1A
2)V(2A1)V(3A.3) (0A.5)V(4A0) = V{pby)Aply,c) |yeS}=
pop(b,c).

Recall that xg is the characteristic function of @ in S x S.

Lemma 1.10 If p # Xy is a weakly reflezive and symmetric fuzzy relation
on S, then there ezists a set T and a fuzzy relation w from S into T such
that p=mom 1.

Proof. Denote by T the set {K* | K € F*}. We define a fuzzy relation
from S to T as follows:

m(z, K*) = t ifz € K and t is the largest number such that K €Ff
' | 0 otherwise.

If p(z,2') =t >0, then by Lemma 1.9, there is an t-complete set K € F*
such that {z,z'} C K. Since (mon~1)(z,z’) =V [m(z, K*) Am(z!, K*)| > ¢

= p(z,z'), we conclude that p C Tom~1.
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Suppose now that (ron~1)(z,z’) = s. Then there exists K* € F such that
n(z, K*) = m(z', K*). This means that {z,z’} C K and hence p(z,2) > s.
(s = (mom~1)(z,2') = Y. [r(z, K*)AT(K*,2')] = Y. [7(z, K*)An(z', K)].
There exists K* such that either n(z, K*) = s and 7(z’, K*) > s or m(z, K*)
> s and 7(z’, K*) = s. Now s is largest such that K €F?. Hence 7(z, K™)
= s and m(z’, K*) = s.) Therefore, ror™! C p.

Combining Lemmas 1.7 and 1.10, we have the following theorem.

Theorem 1.11 A fuzzy relation p # xg on a set S is weakly reflexive and
symmetric if and only if there is a set T and a fuzzy relation w from S into
T such thatp=mon"1. M

In the remainder of this section, we shall use the notation ¢, to denote
the fuzzy relation m defined above.

Definition 1.7 A cover C on a set S is a family of subsets S;,i € I, of S
such that J;c; Si = S, where I is a nonempty inder set.

Definition 1.8 Let p be a fuzzy relation from S into T. For € € [0,1], we
say that:

(1) p is e-determinate if for each = € S, there erists at most oney € T
such that p(z,y) > €.

(2) p is e-productive if for each x € S, there exists at least oney € T
such that p(z,y) > €.

(3) p is an e-function if it is both e-determinate and e-productive.

Lemma 1.12 If p is an e-reflezive fuzzy relation on S, then ¢, is e-produc-
tive and for each € < €, F%, is a cover of S.

Proof. Let 0 < € < e. Since for each z € X, p(z,z) > ¢, and because {z}
is € -complete, there is some K in F? such that z € K. Hence, FY, is a cover
of X. Also, by definition of #,,2 € K implies that ¢,(z, K*) > € which
implies that ¢, is € -productive. ll

In the sequel, we use the term productive (determinate, reflerive, func-
tion) for 1-productive (1-determinate, 1-reflexive, 1-function).

Corollary 1.13 If p is reflerive, then ¢, is productive and each F?f (0 <
€<1)is acover of S.
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The following result is a consequence of Theorem 1.11 and Corollary
1.13.

Corollary 1.14 p is reflerive and symmetric relation on S if and only if
there is a set T and a productive fuzzy relation m from S into T such that
p= mToTm -1 . .

Lemma 1.15 Let p be a weakly reflexive, symmetric and transitive fuzzy
relation on S, and let ¢, denote the relation ¢, whose range is restricted to
F?P. That is, ¢, equals ¢, on S x {K*|K €F?} . Then for each0 <e<1,
q'); 1s e-determinate and the elements of FF are pairwise disjoint.

Proof. Let K and K’ be two not necessarily distinct elements of F# and
assume that K N K’ # 0. For any q; € K N K’, we have p(q,q1) > ¢, for
all ¢ in K and p(q1,¢') > ¢, for all ¢’ in K’. Since p is transitive, we see
that p(q,q’) > €, for all ¢ € K, and ¢’ € K'. Since p is weakly reflexive
and symmetric, we conclude that K U K’ is e-complete. However, since K
and K’ are maximal e-complete, we must conclude that K = K’. Hence,
K # K' = KNK' = 0. Suppose z € K where K €F?. Then ¢,(z, K*) > ¢,
and since z cannot belong to any other sets in FR,d):, is e-determinate. Il

Definition 1.9 A similarity relation p on S is a fuzzy relation on S which
is reflerive, symmetric and transitive. p is called an e-similarity relation if
it is e-reflerive for some 0 < € < 1, symmetric, and transitive.

Note that a similarity relation on S is merely a fuzzy equivalence relation
on S.

Since clearly reflexivity implies weak reflexivity, we have the following
consequence of Lemmas 1.12 and 1.15.

Corollary 1.16 If p is a similarity relation on S, then for each0 < € < 1,
F? is a partition of S. B

We see that Corollary 1.16 says that every similarity relation p can be
represented as |J tp*, where p' is the equivalence relation induced by the
T

partition Ff. It was noted in [14] that if the p*,0 < ¢t < 1, are a nested
sequence of distinct equivalence relations on S with £, > t; if and only if
ptt C p*2, p* is nonempty and the domain of p* is equal to the domain of
p'2, then p = |J tp' is a similarity relation on S, where

t

¢ _[t if(zy)ep
tp'(z,y) = { 0 otherwise.
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The following result, which is a straightforward consequence of Theo-
rem 1.11 and Corollary 1.16, yields another characterization of a similarity
relation.

Theorem 1.17 A relation p is an e-similarity (0 < € < 1) relation on a
set S if and only if there is another set T and an e-function 7 from S into
T such that p=mon~1.

Example 1.2 Let p be the fuzzy relation on S = {a,b,c,d,e, f} given by
the following matriz, M,.

a b c d e f
1.0 05 05 02 02 0.2
0.5 1.0 05 02 02 0.2
05 05 1.0 02 0.2 02
0.2 0.2 02 10 04 04
0.2 0.2 02 04 10 04
0.2 02 02 04 04 10

N0 RO OO

Now M,,2 = M,. Thus p is transitive. Clearly, p is reflezive and sym-
metric. We have

{{a}, {0}, {c}. {d}, {e}, {f}} #05<e<1

e =) Habch{d}.{e}.{f}} if04<e<0.5
¢ {{a,b,c}, {d,e, f}} if0.2<e<04
X). if0<e<02

Let € = 0.4. Then the € — function = : X x {K*|K €F§,} — [0,1],
is defined as follows: m(a, {a,b,c}*) = n(b,{a,b,c}*) = 7(c, {a,b,c}*) =
0.5,1l'(d, {dyeyf}*) = 7l’(€, {dye)f}*) = 7T(f, {dve: f}‘) = 047 and
m(zx, K*) = 0 otherwise.
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2
FUZZY GRAPHS

A graph is a pair (V, R), where V is a set and R is a relation on V. The
elements of V are thought of as vertices of the graph and the elements of
R are thought of as the edges. Similarly, any fuzzy relation p on a fuzzy
subset u of a set V can be regarded as defining a weighted graph, or fuzzy
graph, where the edge (z,y) € V x V has weight or strength p(z,y) € [0,1].
In this chapter, we shall use graph terminology and introduce fuzzy analogs
of several basic graph-theoretical concepts. For simplicity, we will consider
only undirected graphs through out this chapter unless otherwise specified.
Therefore, all fuzzy relations are symmetric and all edges are regarded as
unordered pairs of vertices. We abuse notation by writing (z,y) for an edge
in an undirected graph (V, R), where z,y € V. (We need not consider loops,
that is, edges of the form (z, z); we can assume, if we wish, that our fuzzy
relation is reflexive.) Formally, a fuzzy graph G = (V, u, p) is 2 nonempty set
V together with a pair of functions 2 : V — [0,1] and p : V xV — [0, 1] such
that for all z,y in V, p(z,y) < u(z) Au(y). We call p the fuzzy verter set of
G and p the fuzzy edge set of G, respectively. Note that p is a fuzzy relation
on . We will assume that, unless otherwise specified, the underlying set
is V and that it is finite. Therefore, for the sake of notational convenience,
we omit V' in the sequel and use the notation G = (g, p). Thus in the most
general case, both vertices and edges have membership value. However, in
the special case where p(z) = 1, for all £ € V, edges alone have fuzzy
membership. So, in this case, we use the abbreviated notation G = (V, p).
The fuzzy graph H = (v, ) is called a partial fuzzy subgraph of G = (u, p)
if v C pand 7 C p. Similarly, the fuzzy graph H = (P,v,7) is called a
fuzzy subgraph of G = (V, u, p) induced by P if P C V,v(z) = p(x) for all
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z € P and 7(z,y) = p(z,y) for all z,y € P. For the sake of simplicity, we
sometimes call H a fuzzy subgraph of G. It is worth noticing that a fuzzy
subgraph (P,v,T) of a fuzzy graph (V,u,p) is in fact a special case of a
partial fuzzy subgraph obtained as follows.

) ifzeP
v(z) = {#(ox ifla::V\P

(zy) @y ePxP
T(r,y) = {pl(‘)y if(xjy)xényV\PXP

Hence we see that a fuzzy graph can have only one fuzzy subgraph cor-
responding to a given subset P of V. Thus we shall use the notation (P) to
denote the fuzzy subgraph of G induced by P. For any threshold ,0 <t < 1,
pt={z €V |u(z) >t} and p* = {(z,y) € V x V| p(z,y) > t}. Since
p(z,y) < p(z) A p(y) for all z,y € V, we have p* C uf x u', so that (u', p*)
is a graph with the vertex set u* and edge set p* for all t € [0, 1].

Proposition 2.1 Let G = (u,p) be a fuzzy graph. If 0 < u <t < 1, then
(u*, p') is a subgraph of (u*,p*). B

Proposition 2.2 Let H = (v, 7) be a partial fuzzy subgraph of G = (i, p).
For any threshold t,0 <t < 1, (', %) is a subgraph of (ut,p*). B

We say that the partial fuzzy subgraph (v,7) spans the fuzzy graph
(#,p) if p = v. In this case, we call (v,7) a spanning fuzzy subgraph of
(&, p). For any fuzzy subset v of V such that v C u, the partial fuzzy
subgraph of (i, p) induced by v is the maximal partial fuzzy subgraph of
(1, p) that has fuzzy vertex set v. This is the partial fuzzy graph (v, 7),
where 7(z,y) = v(z) Av(y) A p(z,y) for all z,y € V.

2.1 Paths and Connectedness

Let G = (V,X) be a graph. A path of G is an alternating sequence of
vertices and edges vg, €1, v1, ..., Un—1, €n, Un, Where vg,v; €V, €; € X, ; =
(vi—1,%),i=1,...,n and all the vertices are distinct except vo may be the
same as v, A path is sometimes denoted by vov;...vn, where the edges are
evident by context. Let vgv;...v, be a path. If n > 3 and vy = v,, then
the path is called a cycle. G = (V, X) is said to be complete if (u,v) € X
Vu,v € V, u # v. A clique of a graph is a maximal complete subgraph.

A path P in a fuzzy graph (i, p) is a sequence of distinct vertices zg, z;, ...,
T, (except possibly zo and z,) such that p(x;_y,z;) > 0, 1 < i < n. Here
n > 1is called the length of the path P. The consecutive pairs (z;—1, z;) are
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called the edges of the path. The diameter of z,y € V, written diam(z,y),
is the length of the longest path joining x to y. It is shown in [4] that
if diam(z,y) = 1, then p™(z,y) = p(z,y). It is also shown in [4] that if
diam(z,y) = k, then p>®(z,y) = V{p'(z,y) | i = 1,2,...,k}. In fact an
algorithm to compute p™ is given in [4]. The strength of P is defined as
A ,p(zi—1,z;). In other words, the strength of a path is defined to be
the weight of the weakest edge of the path. A single vertex r may also
be considered as a path. In this case, the path is of length 0. If the path
has length 0, it is convenient to define its strength to be u(zg). It may be
noted that any path of length n > 0 can as well be defined as a sequence
of edges (ri—1,%:),1 < i < n, satisfying the condition p(z;_;,z;) > 0 for
1 < i < n. A partial fuzzy subgraph (u, p) is said to be connected if Vz,y €
supp(u), p>(z,y) > 0.

We call P a cycle if o = z, and n > 3. Two vertices that are joined
by a path are said to be connected. It is evident that “connected” is an
equivalence relation. In fact,  and y are connected if and only if p*°(z,y) >
0. The equivalence classes of vertices under this relation are called connected
components of the given fuzzy graph. They are just its maximal connected
partial fuzzy subgraphs. A strongest path joining any two vertices z,y
has strength p*°(z,y). We shall sometimes refer to this as the strength of
connectedness between the vertices.

Proposition 2.3 If (v,7) is a partial fuzzy subgraph of (1, p), then T C
.l

Bridges and Cut Vertices

Let G = (u,p) be a fuzzy graph, let z,y be two distinct vertices, and let
G’ be the partial fuzzy subgraph of G obtained by deleting the edge (z,y).
That is, G’ = (u,p'), where p’(z,y) = 0 and p’ = p for all other pairs.
We say that (z,y) is a bridge in G if p'*°(u,v) < p>(u,v) for some u,v. In
other words, if deleting the edge (z, y) reduces the strength of connectedness
between some pair of vertices. Thus, (z,y) is a bridge if and only if there
exist vertices u,v such that (z,y) is an edge of every strongest path from
u to v.

Theorem 2.4 The following statements are equivalent:
(1) (z,y) is a bridge;

(2) p"°(z,y) < p(z,v);

(3) (z,y) is not the weakest edge of any cycle.
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Proof. (2) = (1) If (z,y) is not a bridge, then p'™(z,y) = p>®(z,y) >
p(z,y).

(1) = (3) If (z,y) is a weakest edge of a cycle, then any path involving
edge (z,y) can be converted into a path not involving (z,y) but at least
as strong, by using the rest of the cycle as a path from « to y. Thus (z,y)
cannot be a bridge.

(3) = (2) If p'°(z,y) > p(z,y), there is a path from z to y, not involving
(z,y), that has strength > p(z,y), and this path together with (z,y) forms
a cycle of which (z,y) is a weakest edge. B

Let w be any vertex and let G’ be the partial fuzzy subgraph of G
obtained by deleting the vertex w. That is, G’ = (i, p’) is the partial
fuzzy subgraph of G such that p’'(w) = 0, ¢/ = p for all other vertices,
p'(w,z) =0 for all z, and p’ = p for all other edges.

We say that w is a cutvertez in G if (p')* (u,v) < p™®(u,v) for some u,v
such that © # w # v. In other words, if deleting the vertex w reduces the
strength of connectedness between some other pair of vertices. Hence, w is
a cutvertex if and only if there exist u, v, distinct from w such that w is on
every strongest path from u to v. G’ is called nonseparable (or sometimes:
a block) if it has no cut vertices. It should be pointed out that a block
may have bridges. However this cannot happen for non-fuzzy graphs. For
example, consider the fuzzy graph G = (V,p), where V = {z,y,2} and
p(z,y) = 1, p(z,z) = p(y,z) = 0.5. Note that the edge (z,y) is a bridge
since its deletion reduces the strength of connectedness between z and y
from 1 to 0.5. However, it is easily verified that no vertex of this fuzzy
graph is a cutvertex.

If between every two vertices z,y of G there exist two strongest paths
that are disjoint (except for z,y themselves), G is a block. This is analogous
to the “if” of the non-fuzzy graph theorem that G is a block (with at least
three vertices) if and only if every two vertices of G lie on a common cycle.
The “only if”, on the other hand, does not hold in the fuzzy case, as the
example shows.

Forests and Trees

A (crisp) graph that has no cycles is called acyclic or a forest. A connected
forest is called a tree. We call a fuzzy graph a forest if the graph consisting of
its nonzero edges is a forest, and a tree if this graph is also connected. More
generally, we call the fuzzy graph G = (u, p) a fuzzy forest if it has a partial
fuzzy spanning subgraph F = (u,7) which is a forest, where for all edges
(z,y) not in F (i.e., such that 7(z,y) = 0), we have p(z,y) < 7°(z,y). In
other words, if (z,y) is in G but (z,y) is not in F, there is a path in F
between z and y whose strength is greater than p(z,y). It is clear that a
forest is a fuzzy forest.
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The fuzzy graphs in Figure 2.1 are fuzzy forests and the fuzzy graphs in
Figure 2.2 are not fuzzy forests.

FIGURE 2.1 Fuzzy forests.

x 10 y X 10 y
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If G is connected, then so is F' since any edge of a path in G is either in
F, or can be diverted through F. In this case, we call G a fuzzy tree. The
examples of fuzzy forests given above are all fuzzy trees. Note that if we
replaced < by < in the definition, then even the fuzzy graph (V, y, p), where
V = {z,y,2}, u(z) = p(y) = u(z) = 1,p(z,y) = p(z,2) = p(y,2) = 1,
would be a fuzzy forest since it has partial fuzzy spanning subgraphs such
as (V,,p'), where p'(z,y) = p'(z,2) = 1 and p(y, 2) = 0.

Theorem 2.5 G is a fuzzy forest if and only if in any cycle of G, there is
an edge (z,y) such that p(z,y) <p” (z,y), where G' = (u,p’) is the partial
fuzzy subgraph obtained by the deletion of the edge (z,y) from G.

Proof. Suppose (z,y) is an edge, belonging to a cycle, which has the
property of the theorem and for which p(z, y) is smallest. (If there are no
cycles, G is a forest and we are done.) If we delete (z,y), the resulting
partial fuzzy subgraph satisfies the path property of a fuzzy forest. If there
are still cycles in this graph, we can repeat the process. Now at each stage,
no previously deleted edge is stronger than the edge being currently deleted.
Thus the path guaranteed by the property of the theorem involves only
edges that have not yet been deleted. When no cycles remain, the resulting



24 2. FUZZY GRAPHS

partial fuzzy subgraph is a forest F. Let (z,y) not be an edge of F. Then
(z,y) is one of the edges that we deleted in the process of constructing
F, and there is a path from z to y that is stronger than p(z,y) and that
does not involve (z,y) nor any of the edges deleted prior to it. If this path
involves edges that were deleted later, it can be diverted around them using
a path of still stronger edges; if any of these were deleted later, the path
can be further diverted; and so on. This process eventually stabilizes with
a path consisting entirely of edges of F. Thus G is a fuzzy forest.

Conversely, if G is a fuzzy forest and P is any cycle, then some edge
(z,y) of Pisnot in F. Thus by definition of a fuzzy forest we have p(z,y) <
7°(z,y) <p*(z.y).- A

We see that if G is connected, then so is F determined by the construction
in the first part of the proof.

Proposition 2.6 If there is at most one strongest path between any two
vertices of G, then G must be a fuzzy forest.

Proof. Suppose G is not a fuzzy forest. Then by Theorem 2.5, there is
a cycle P in G such that p(z,y) > p'(z,y) for all edges (z,y) of P. Thus
(z.y) is a strongest path from z to y. If we choose (z,y) to be a weakest
edge of P, it follows that the rest of the P is also a strongest path from z
to y, a contradiction. Il

We now show that the converse of Proposition 2.6 does not hold, that
is, G can be a fuzzy forest and still have multiple strongest paths between
vertices. For example, the fuzzy graph in Figure 2.3 is a fuzzy forest. Here
F consists of all edges except (u,y). The strongest paths between z and
y have strength 1/4, due to the edge (z,u); both z,u,v,y and z,u,y are
such paths, where the former lies in F but the latter does not.

Proposition 2.7 If G is a fuzzy forest, then the edges of F are just the
bridges of G.

Proof. An edge (z,y) not in F cannot be a bridge since p(z,y) < 7°°(z,y)
< p*°(z,y). Suppose that (z,y) is an edge in F. If it were not a bridge, we
would have a path P from z to y, not involving (x,y), of strength > p(z, y).
This path must involve edges not in F since F is a forest and has no cycles.
However, by definition, any such edge (u;,v;) can be replaced by a path P;
in F of strength > p(u,v). Now P; cannot involve (z,y) since all its edges
are strictly stronger than p(u,v) > p(z,y). Thus by replacing each (u;,v;)
by P;, we can construct a path in F from z to y that does not involve
(z,y), giving us a cycle in F, contradiction. ll
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FIGURE 2.3 A fuzzy forest with no multiple strongest paths between
vertices.

Trees and Cycles

Recall that supp() = {z € V | u(z) > 0} and supp(p) = {(z,y) e V x V|
p(z,y) > 0}. Since p(z,y) < u(z) A u(y), (z,y) € supp(p) implies z,y €

supp(u). Thus (supp(), supp(p)) is a graph.
We now recall some definitions and give some new ones.

Definition 2.1

(1) (p, p) is a tree if and only if (supp(y), supp(p)) is a tree.

(2) (., p) is a fuzzy tree if and only if (1, p) has a fuzzy spanning subgraph
(. V) which is a tree such that V (u,v) € supp(p)\ supp(v), p(u,v)
< v™(u,v), i. e., there exists a path in (p, v) between u and v whose
strength is greater than p(u,v).

Definition 2.2

(1) (i, p) is a cycle if and only if (supp(n), supp(p)) is a cycle.

(2) (n, p) is a fuzzy cycle if and only if (supp(p), supp(p)) is a cycle and
B unique (z,y) € supp(p) such that p(z,y) = A{ p(u,v) | (u,v) €
supp(p)}-

Example 2.1 Let V = {u,v,w,s,t} and X = {(u,v), (u,w), (v,w), (w,s),
(w,t),(s,t)}. Let u(z) = 1 for all z € V and let p be the fuzzy subset
of X defined by p(u,v) = 1/2, p(u,w) = p(v,w) = p(w,s) = p(w,t) =
p(s,t) = 1. Then (u,p) is neither a fuzzy cycle nor a fuzzy tree.

Example 2.2 Let V = {w, u, v} and X = {(w,u), (w,v), (u,v)}. Let p(x)
=1 forallz € V and p and p’ be fuzzy subsets of X defined by p(w, )
= p(w,v) = 1, p(u,v) = 1/2 and ¢’ (w,v) = 1, o/ (w,u) = p'(u,v) = 1/2,
Then (i, p) is a fuzzy tree, but not a tree and not a fuzzy cycle while (u,
p') is a fuzzy cycle, but not a fuzzy tree.
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Example 2.2 illustrates the next result.

Theorem 2.8 Let (i, p) be a cycle. Then (u, p) is a fuzzy cycle if and
only if (1, p) is not a fuzzy tree.

Proof. Suppose that (u, p) is a fuzzy cycle. Then 3 distinct edges (x1,¥1),
(22.32) € supp(p) such that p(z1,41) = p(z2,u2) = Mp(u,v) | (u,2) €
supp(p)}. If (1, v) is any spanning tree of (u, p), then supp(p)\ supp(v) =
{(u,v)} for some u, v € V since (, p) is a cycle. Hence 3 path in (y,v)
between u and v of greater strength that p(u,v). Thus (x, p) is not a fuzzy
tree. Conversely, suppose that (u, p) is not a fuzzy tree. Since (g, p) is a
cycle, we have V (u,v) € supp(p) that (u, v) is a fuzzy spanning subgraph
of (g, p) which is a tree and v*°(u,v) < p(u,v) where v(u,v) = 0 and
v(z,y) = p(z,y) V (z,y) € supp(p) \ {(u,v)}. Hence p does not attain
AN p(z,y) | (z.y) € supp(p)} uniquely. Thus (g, p) is a fuzzy cycle. B

Theorem 2.9 If 3 q € (0, 1] such that (supp(), p?) is a tree, p? a q— cut,
then (u, p) is as fuzzy tree. Conversely, if (u, p) is a cycle and (p, p) is a
fuzzy tree, then 3 g € (0,1] such that (supp(p), p?) is a tree.

Proof. Suppose that g exists. Let v be the fuzzy subset of V x V' such that
v =ponp? and v(z,y) =0if (z,y) € V xV\p9. Then (u, v) is a spanning
fuzzy subgraph of (u, p) such that (p, v) is a fuzzy tree since (supp(p),
supp(v)) is a tree. Suppose that (u,v) € V x V and (u,v) ¢ p9. Then 3
a path between u and v of strength > g > p(u,v). Thus (u, p) is a fuzzy
tree. For the converse, we note that since (i, p) is a cycle and a fuzzy tree,
3 unique (z,y) € supp(p) such that p(z,y) = A{p(u,v) | (v,v) € supp(p)}.
Let g be such that p(z,y) < ¢ < A{p(v,v) | (z,v) € supp(p) \ {(z,¥)}}-
Then (supp(u), p9) is a tree. B
We now illustrate Theorem 2.9.

Example 2.3 Let V = {s,t,u,v,w} and X = {(s,t),(s,u),(t,v), (u,v),
(u,w), (w,v)}. Let u(z) =1 for allz € V and let p be the fuzzy subset of X
defined by p(s,t) = 1/4, p(s,u) = p(t,u) = 3/8, p(u,v) = 1/2, and p(u, w)
= p(w,v) = 1. Then B q € (0, 1] such that (supp(p), p?) is a tree. However
(1. p) is a fuzzy tree.

A Characterization of Fuzzy Trees

The results here are taken from [41]. Let G = (V, u,p) be a fuzzy graph.
Recall that p®(u,v) denotes the strength of connectedness between u and
vin V.
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Let G = (u,p) be a fuzzy graph such that G* = (supp(x), supp(p)) is a
cycle and let t = A{p(u,v) | p(u,v) > 0}. Then all edges (u,v) such that
p(u,v) >t are bridges of G.

Theorem 2.10 Let G = (p, p) be a fuzzy graph such that G* = (supp(u),
supp(p)) is a cycle. Then a vertez is a cutvertez of G if and only if it is a
common vertex of two bridges.

Proof. Let w be a cutvertex of G. Then there exist « and v, other than w,
such that w is on every strongest u-v path. Since G* = (supp(x), supp(p))
is a cycle, there exists only one strongest u-v path containing w and all its
edges are bridges. Thus w, is a common vertex of two bridges. Conversely,
let w be a common vertex of two bridges (u,w) and (w,v). Then both
(v,w) and (w,v) are not the weakest edges of G. Also, the path from
u to v not containing the edges (u,w) and (w,v) has strength less than
p(u,w) A p(w,v). Hence the strongest u-v path is the path u,w,v and
p2(u,v) = p(u,w) A p(w,v). Thus w is a cutvertex. Bl

Theorem 2.11 If w is a common vertez of at least two bridges, then w is
a cutvertez.

Proof. Let (u;,w) and (w, uz) be two bridges. Then there exist some u, v
such that (u;,w) is on every strongest u-v path. If w is distinct from u and
v it follows that w is a cutvertex. Next, suppose one of v,u is w so that
(u1,w) is on every strongest u-w path or (w,ug) is on every strongest w-v
path. Suppose that w is not a cutvertex. Then between every two vertices
there exists at least one strongest path not containing w. In particular,
there exists at least one strongest path P, joining u; and ug, not containing
w. This path together with (u;,w) and (w,ug) forms a cycle.

We now consider two cases. First suppose that u;, w, 25 is not a strongest
path. Then clearly one of (uy,w), (w, u2) or both become the weakest edges
of the cycle which contradicts that (u;,w) and (w,ug) are bridges.

Second suppose that u;,w,us is also a strongest path joining u; to us.
Then p™(uy, ug) = p(u;, w) A p(w,uz), the strength of P. Thus edges
of P are at least as strong as p(u1,w) and p(w,uz) which implies that
(u;,w), (w,uz) or both are the weakest edges of the cycle, which again is
a contradiction. I8

That the condition in Theorem 2.11 is not necessary can be observed from
the following example. Let V' = {u,v, w,z} and X = {(u,v), (v, w), (u, z),
(v,w), (v,z), (w,z)}. Let p(s) = 1 for all s € V and let p be the fuzzy
subset of X defined by p(u,w) = p(v,z) =1, p(v,w) = p(w,z) = 0.7, and
p(u,v) = p(u,z) = 0.5. Clearly, w is a cutvertex; (u,w) and (v, ) are the
only bridges.
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Consider the fuzzy graph G = (V, p, p) where V = {u,v,w,z}. Let X
= {(u,v), (v,w),(w,z),(z,u)}. Let u(s) =1 for all s € V and let p be
the fuzzy subset of X defined by p(u,v) = p(w,z) = 0.5, and p(v,w) =
p(z,u) = 0.4. Note that (u,v) and (w, z) are the bridges and no vertex is
a cutvertex. This is a significant difference from the crisp graph theory.

Theorem 2.12 If (u,v) is a bridge, then p*(u,v) = p(u,v).

Proof. Suppose that (u,v) is bridge and that p>®(u,v) > p(u,v). Then
there exists a strongest u-v path with strength greater than p(u, v) and all
edges of this strongest path have strength greater than p(u,v) and all edges
of this strongest path have strength greater than p(u,v). Now, this path
together with the edge (u,v) forms a cycle in which (u,v) is the weakest
edge, contradicting that (u,v) is a bridge. l

The converse of Theorem 2.12 is not true. The condition for the converse
to be true is discussed in Theorem 2.20.

Recall that a connected fuzzy graph G = (u, p) is a fuzzy tree if it has
a fuzzy spanning subgraph F = (u,7), which is a tree, where for all edges
(u,v) not in F, p(u,v) < 7°°(u,v).

Equivalently, there is a path in F between u and v whose strength exceeds
p(u,v).

Lemma 2.13 If (v,7) is a partial fuzzy subgraph of (u,p), then for all
u, v, 7°(u,v) < p2(u,v). B

Theorem 2.14 If G = (u,p) is a fuzzy tree and G* = (supp(p), supp(p))
is not a tree, then there exists at least one edge (u,v) in supp(p) for which

p(u,v) < p™(u,v).

Proof. If G is a fuzzy tree, then by definition there exists a fuzzy spanning
subgraph F = (p,7), which is a tree and p(u,v) < 7°°(u,v) for all edges
(u,v) not in F. Also 7%°(u,v) < p*°(u,v) by Lemma 2.13. Thus p(u,v) <
p*>°(u,v) for all (u,v) not in F and by hypothesis there exist at least on
edge (u,v) not in F. W

Definition 2.3 A complete fuzzy graph is a fuzzy graph G = (p,p) such
that p(u,v) = p(u) A p(v) for all u and v.

Lemma 2.15 If G is a complete fuzzy graph, then p>(u,v) = p(u,v). B
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Lemma 2.16 A complete fuzzy graph has no cutvertices.

That the converse of Lemma 2.15 is not true can be observed from the
following example.

Example 2.4 Let V = {u,v,w,z} and X = {(u,v),(u,
(v.2), (w,2)}. Let p(u) = 08, and p(v) = p(w) = p(z
the fuzzy subset of X defined by p(v,w) = 1, p(v,z) =
p(u,v) = p(u,w) = p(u,z) = 0.6

w), (v, ), (v, w),
) = 1. Let p be
p(w,z) = 0.8, and

Further, a complete fuzzy graph may have a bridge as illustrated by the
next example. Let V = {u,v,w,z} and X = {(u,v), (v, w), (u, ), (v, w),

(v,z), (w,z)}. Let p(u) = 0.6, u(z) = 0.8, and u(v) = p(w) = 1. Let p be
the fuzzy subset of X defined by p(v,w) = 1, p(v,z) = p(w,z) = 0.8, and
p(u,v) = p(u,w) = p(u,z) = 0.6.

Theorem 2.17 If G = (u, p) is a fuzzy tree, then G is not complete.

Proof. If possible, let G be a complete fuzzy graph. Then p™(u,v) =
p(u,v) for all u,v by Lemma 2.15. Now G being a fuzzy tree, p(u,v) <
v>=<(u,v) for all (u,v) not in F. Thus p™(u,v) < v*°(u,v), contradicting
Lemma 2.13. A

Recall that if G is a fuzzy tree, then the edges of F are the bridges of G.

Theorem 2.18 If G is a fuzzy tree, then the internal vertices of F are the
cutvertices of G.

Proof. Let w be any vertex in G which is not an end vertex of F. Then
w is the common vertex of at least two edges in F' which are bridges of G
and by Theorem 2.11, w is a cutvertex. Also, if w is an end vertex of F,
then w is not a cutvertex; else there would exist u, v distinct from w such
that w is on every strongest u-v path and one such path certainly lies in
F. But since w is an end vertex of F, this is not possible. l

Corollary 2.19 A cutverter of a fuzzy tree is the common vertez of at
least two bridges. B

Theorem 2.20 G = (u,p) is a fuzzy tree if and only if the following are
equivalent for all u,v :

(1) (u,v) is a bridge.
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(2) p>=(u,v) = p(u,v).

Proof. Let G = (u, p) be a fuzzy tree and suppose that (u,v) is a bridge.
Then p>®(u,v) = p(u,v) by Theorem 2.12. Now, let (u,v) be an edge in G
such that p>®°(u,v) = p(u,v). If G* is a tree, then clearly (u,v) is a bridge;
otherwise, it follows from Theorem 2.14 that (u,v) is in F and (u,v) is a
bridge.

Conversely, assume that (1) and (2) are equivalent. Construct a maxi-
mum spanning tree T : (g, 7) for G [4]. If (u,v) is in T, by an algorithm
in [4], p>(u,v) = p(u,v) and hence (u,v) is a bridge. Now, these are the
only bridges of G; for, if possible let (u’,v’) be a bridge of G which is not
in T. Consider a cycle C consisting of (u’,v’) and the unique u'-v’ path in
T. Now edges of this u’-v’ path are bridges and so they are not weakest
edges of C and thus (u’,v") must be the weakest edge of C and thus cannot
be a bridge.

Moreover, for all edges (u’, v') not in T', we have p(u’,v') < 7°(u/, v'); for,
if possible let p(u’,v') > 7°(u’,v"). But p(u’,v") < p*°(v',v"), where strict
inequality holds since (u’, v’) is not a bridge. Hence, 7°(u’,v’) < p™=(v/,?)
which gives a contradiction since 7°(u’,v’) is the strength of the unique
u/-v’ path in T and by an algorithm in [4], p®(u’,v") = 7°°(v/,v’). Thus
T is the required spanning subgraph F, which is a tree and hence G is a
fuzzy tree. B

For a fuzzy tree G, the spanning fuzzy subgraph F is unique. It follows
from the proof of Theorem 2.20 that F is nothing but the maximum fuzzy
spanning tree T of G.

Theorem 2.21 A fuzzy graph is a fuzzy tree if and only if it has a unique
mazimum fuzzy spanning tree. B

For a fuzzy graph which is not a fuzzy tree there is at least one edge in
T which is not a bridge and edges not in T are not bridges of G. This
observation leads to the following theorem.

Theorem 2.22 If G = (u,p) is a fuzzy graph with supp(p) = V and
|V| =p then G has at most p — 1 bridges. B

Theorem 2.23 Let G = (i, p) be a fuzzy graph and let T be a mazimum
fuzzy spanning tree of G. Then end vertices of T are not cutvertices of
G.n

Corollary 2.24 Every fuzzy graph has at least two vertices which are not
cutvertices. B
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FIGURE 2.4 Graph of example 2.5.

(Fuzzy) Cut Sets

The results in the remainder of the section are from [30]. Before proceeding
further, we review some concepts from graph theory. We associate with a
graph G, two vector spaces over the field of scalars Zy = {0,1}, where
addition and multiplication is modulo 2. Then for 1 € Z3, 1+1 = 0.
Let V = {v1,...,un} denote the set of vertices of G and X = {ey, ...,em},
the set of edges. A 0-chain of G is a formal linear combination ) €;v; of
vertices and a I-chain a formal linear combination of edges Y €;e;, where
the ¢; € Zo. The boundary operator 9 is a linear function which maps 1-
chains to O-chains such that if e = (z,y), then 9(e) = z+y. The coboundary
operator § is a linear function which maps 0-chains to 1-chains such that
8(v) = Y €;e; whenever e; € Z; is incident with v.

Example 2.5 Let G = (V, X), where V = {v1,...,v6} and X = {e1,...,e9}
and where e; = (v1,v2), e2 = (v1,v3), e3 = (v2,v3), €4 = (v2,v4), €5 =
(v2,v5), es = (v3,vs), e7 = (v3,76), €g = (v4,vs), and eg = (vs,v¢). The
I-chain v, = e1 +e2+ €4+ eg has boundary 8(7y;) = (v1 +v2) + (v1 +v3) +
(v2+vq)+(vs+v6) = va+va+us+ve. The 0-chain vy = v3+14+v5+vs has
coboundary 6(yy) = (e2+e3+es+e7)+(es+es)+(es+eg+eg+eg)+(er+eg)
=eax+e3+e4+es5.

A 1-chain with boundary 0 is called a cycle vector of G which we can
think of as a set of line disjoint cycles. The collection of all cycle vectors,
called the cycle space, form a vector space over Zs. A cut set of a connected
graph is a collection of edges whose removal results in a disconnected graph.
A cocycle is a minimal cutset. A coboundary of G is the coboundary of some
0-chain in G. The coboundary of a subset of V is the set of all edges joining
a point in this subset to a point not in the subset. Hence every coboundary
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is a cutset. Since any minimal cutset is a coboundary, a cocycle is just a
minimal nonzero coboundary. The collection of all coboundaries of G is a
vector space over Z, and is called the cocycle space of G. A basis of this
spaces which consists entirely of cocycles is called a cocycle basis for G.

Let G be a connected graph. Then a chord of a spanning tree T is an
edge of G which is not in 7. The subgraph of G consisting of T and any
chord of T has only one cycle. The set C(T) of cycles obtained in this
way is independent. Every cycle C depends on the set C(T) since C is the
symmetric difference of the cycles determined by the chords of T which lie
in C. We define m(G), the cycle rank, to be the number of cycles in a basis
for the cycle space of G. This discussion yields the following result.

Theorem 2.25 The cycle rank of a connected graph G is equal to the
number of chords of any spanning tree in G. M

Similar results can be derived for the cocycle space. Again assume that
G is a connected graph. The cotree T’ of a spanning tree T of G is the
spanning subgraph of G containing exactly those edges which are not in
T. A cotree of G is the cotree of some spanning tree T. The edges of G
which are not in T” are called its twigs. The subgraph of G consisting of
T’ and any one of its twigs contains exactly one cocycle. The collection of
cocycles obtained by adding twigs to T”, on at a time, is a basis for the
cocycle space of G. The cocycle rank m’(G) is the number of cocycles in a
basis for the cocycle space of G. A more detailed account can be found in
[20].

Theorem 2.26 The cocycle rank of a connected graph G is the number of
twigs in any spanning tree of T. M

Let z € V and let t € [0,1]. Define the fuzzy subset z; of V by Vy €
Vize(y) = 0if y # = and z4(y) = t if y = z. Then z, is called a fuzzy
singleton in V. If (z,y) € V x V, then (z,y) 5(z,y) denotes a fuzzy singleton
inV xV.

Definition 2.4 Let E be a subset of supp(p).

(1) {(.9)p(z,y) | (z.y) € E} is a cut set of (u, p) if E is a cut set of
(supp(p), supp(p))-

(2) {(2.¥)p(en) | (2:9) € E} is o fuzzy cut set of (1, p) if 3 u, v € supp(u)
such that p'®(u,v) < p™®(u,v) where p’ is the fuzzy subset of V. x V
defined by p' = p on supp(p) \ E and p'(z,y) = 0 V(z,y) € E, i. e.,
the removal of E from supp(p) reduces the strength of connectedness
between some pair of vertices of (u, p).
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When E is a singleton set, a cut set is called a bridge and a fuzzy cut
set is called a fuzzy bridge.

The following is an example of a fuzzy graph (u,p) which has no fuzzy
bridges and where p is not a constant function.

Example 2.6 Let V = {t,u,v,w} and X = {(¢,u), (u,v),(v,w),(w,t),
(t,v)}. Let u(z) =1 for allz € V and p(t,u) = p(u,v) = p(v,w) = p(w,t)
=1 and p(t,v) = 1/2. Then p is not constant, but (p, p) does not have a
fuzzy bridge since the strength of connectedness between any pair of vertices
of (u, p) remains 1 even after the removal of an edge.

Theorem 2.27 Let V = {v1,...,vn} and C = {(v1,v2),(v2,v3),...,
('Un—hvn))(vnvvl)}’ n Z 3

(1) Suppose that supp(p) 2 C and thatV (vj,vk) € supp(p)\ C, p(vj,vk)
< V{p(vi,vi+1) | i = 1,...,n} where vy = vy. Then either p is a
constant on C or (u, p) has a fuzzy bridge.

(2) Suppose that O #supp(p) C C. Then (u, p) has a bridge.

Proof. (1) Suppose that p is not constant on C. Let (vh,vp41) € C be
such that p(ve, va+1) = V{p(vi,vi+1) | ¢ = 1,...,n}. Since p is not constant
on C, the strength of the path C \ {(va,vn+1)} between v, and vy, is
strictly less than p(vh, un+1). The strength of any other path P between vy
and vy is also strictly less than p(vy, vh41) since P must contain an edge
from supp(p) \ C. Thus (v, Uh+1)p(vp,uns,) 1S & fuzzy bridge.

(2) Immediate. B

Theorem 2.28 Suppose that the dimension of the cycle space of (supp(p),
supp(p)) is 1. Then (u, p) does not have a fuzzy bridge if and only if (1, p)
is a cycle and p is a constant function.

Proof. Suppose it is not the case that (u, p) is a cycle and p is a constant
function. If (u, p) is not a cycle, then 3 edge (z,y) € supp(p) which is not
part of the cycle. Then (z,¥),(z,y) is a bridge and hence a fuzzy bridge.
Suppose that (g, p) is a cycle, but p is not a constant function. Let (z,y) €
supp(p) be such that p(z,y) is maximal. Then (z,y),(z,y) is a fuzzy bridge.
Conversely, suppose that (i, p) is a cycle and p is a constant function.
Then the deletion of an edge (v;, v;4)) yields a unique path between v; and
vi41 of strength equal to p(v;, vi+1). Thus (v, vi41)p(w,,v.,) IS DOt a fuzzy
bridge. H

(Fuzzy) Chords, (Fuzzy) Cotrees, and (Fuzzy) Tuwigs
We assume throughout this section that (supp(u), supp(p)) is connected.
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Definition 2.5 Let (u, v) be a spanning fuzzy subgraph of (u, p) which is
a tree. If (1, vy) is a fuzzy tree such that v C vy C p, vy = p on supp(vy),
and 3 a fuzzy tree (u, V') such that vy C v/ C p and v/ = p on supp(V'),
then (u, vys) s called a fuzzy spanning tree of (u, p) with respect to v.

Clearly given (p, v) and (u, p) of Definition 2.5, (g, vf) exists. We note
that (u, v) is a spanning fuzzy subgraph of (u, vy).

In Example 2.6, let v, vy, and v’ be the fuzzy subsets of X defined as
follows: v = p on {(t,u), (¢,v), (t,w)} and v(w,v) = v(u,v) =0,vf = p on
{(t.w), (2, v), (2, w), (v,v)} and vy(w,v) =0, ’/f = pon {(t,u), (t,v), (¢, w),
(w,v)} and v} (u, v) = 0. Then both (g, vy) and (p, v}) are fuzzy spanning
trees of (1, p) with respect to v. That is, given v, vy in Definition 2.5 is not
necessarily unique.

Consider the fuzzy graph (g, p) of Example 2.2 . Define the fuzzy subset v
of X by v(w,u) = v(u,v) = 1. Since (i, p) is not a fuzzy cycle, the addition
of (u,v)1/2 to (i, v) does not create a fuzzy cycle. This fact motivates the
definition of a fuzzy chord below.

Definition 2.6 Let (u, v) be a fuzzy spanning subgraph of (u, p) which is
a tree. Let (z,y) € supp(p).

(1) (%,9)p(z.y) i a chord of (4, v) if and only if (z,y) ¢ supp(v), i. e.,
(z,y) s a chord of (supp(u), supp(p)).

(2) (2:Y)p(z,y) 15 afuzzy chord of (u, vy) if and only if (z,y) € (T,Y) p(z.y)-

Example 2.7 LetV = {s,t,u,v,w} and X = {(w, s), (w, 1), (w,u), (w,v),
(s,t), (u,v)}. Define the fuzzy subsets u of V and p, v of X by p(z) = 1 for
allz €V and p(z,y) = 1 for all (z,y) in X \ {(w,u)} and p(w,u) = 1/2,
v(z,y) = 1 for all (z,y) inY, where Y = X \ {(w,s), (w,u)}. Then vy =
p on X\{(w,s)} and vj(w,s) = 0. Also (w,s); and (w,u),/ are chords of
(1, v) and (w,s); is @ fuzzy chord of (i, v¢). If we define the fuzzy subset
V' of X by v' = vy on supp(vs) and V' (w,s) =t where 0 < t < 1, then
(1, V') is a fuzzy tree such that vy C V'. However, v' # p on supp(V').

Definition 2.7 Let (u, v) be a spanning fuzzy subgraph of (11, p) which is
a tree.

(1) Let V' be a fuzzy subset of V x V. Then (p, V') is the cotree of (u,
v) if and only if V (z,y) € supp(p), v'(z,y) = 0 if v(z,y) > 0 and
Vi(z,y) = p(z,y) f v(z,y) = 0.

(2) Let vy’ be a fuzzy subset of V x V. Then (p, vs') is the fuzzy cotree
of (i, vs) f and only if ¥ (z,9) € supp(p), v1'(z,y) = 0 if v(z,)
> 0 and vy'(z,y) = p(z,y) if vs(z,y) = 0.
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Let (p, V') be a cotree of (i, v), where (¢, v) is a spanning fuzzy subgraph
of (i, p) which is a tree. Then (supp(u), supp(v')) is a cotree of (supp(x),
supp(v)) since supp(v') N supp(v) = 0, supp(v') U supp(v) = supp(p), and
(supp(), supp(v)) is a tree.

Definition 2.8 Let (1, v) be a fuzzy spanning subgraph of (u, p) which is
a tree and let (z,y) € supp(p).

(1) Let (u, V') be a cotree of (n, v). Then (2,Y)p(z,y) 5 a twig of (u, V')
if and only if V' (z,y) = 0.

(2) Let (i, vs') be a fuzzy cotree of (u, vy). Then (T,¥)p(z,y) 5 a fuzzy
twig of (i, v¢') if and only if v¢'(z,y) =0.

Example 2.8 Let (u, p), (1, v), and (u, vy) be the fuzzy subgraphs of
Ezample 2.7. Let (u, V') be the cotree of (u, v) and (u, vs') be the fuzzy
cotree of (, vs). Then the twigs of (u, V') are (s,t)1, (w,t)1, (w,v)1, and
(uyv)l‘ The ﬁLZZy tungs Of (“v yf,) are (s)t)ly (wat)lv (wa '0)1, (u1v)11 and
(wv u)1/2'

(Fuzzy) 1-Chain with Boundary 0, (Fuzzy) Coboundary, and
(Fuzzy) Cocyles

We recall that a pair (M, ) is a semigroup if M is a nonempty set and *
is an associative binary operation on M. We let G = (g, p). If X is a set of
fuzzy singletons, we let foot(X) denote {z | z, € X}.

Definition 2.9 Let (z,y) € V x V. Then (z,y) is called exceptional in G
if and only if 3 a cycle C C V x V such that (z,y) € C and (z,y) is unique
with respect to p(z,y) = A{p(u,v) | (u,v) € C}. Let E = {(z,y) e V xV
| (z,y) is exceptional}. Let pp be the fuzzy subset of V x V defined by pg
=ponV xV\E and pg(z,y) =0V(z,y) € E.

Let S, = {(z,9): | (2,y) € supp(p), t € (0,1J} U{0; | t € (0,1]}. Let
addition of elements of supp(p) be a formal addition modulo 2, That is,
¥(z,y), (u,v) € supp(p), we write (z,y)+(u, v) if (z,y) # (v,v) and (z,y)+
(u,v) = 0if (z,9) = (u,v). Then ¥(z,y):, (u,v)s € Sp, (2,9)e + (w,v)s =
((z,y)+ (u,v)), where r = tAs. Also V(z,y): € S,, (z,9):+0, = (z,y)- and
0¢ + 0s = 0,, where r =t A s. Clearly (S,. +) is a commutative semigroup
with identity, 0;. If S is a set of fuzzy singletons of a set W, we let foot(S)
={weW|w €S8}

Since Zo = {0,1} is the field of integers modulo 2, 1 +1 = 0. We have
that EEi(IEi, yi)P(I.,y.-) + Zei,(Iiayi)p(x‘.y.) =Y (& + &) (s, yi)p(x;,yi),
&(Ti Vi) plaave) = (i, Yi) p(z: s if € = 1 and €(Ti, Yi) p(ze,ye) = Op(as o) if €
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=0, €, &' € Zy. We have that Y €;(z:, ¥i) p(zi,vs) = (O €i(Z4,¥i))m where
m = A {p(zi, )}

Definition 2.10

(1) Y €i(%i,Yi) p(zs,y:) 15 @ 1-chain with boundary 0 in (u, p) where (z:,y:)
€ supp(p) if and only if 3 €;(x;,y:) is a I-chain with boundary 0 in
(supp(p), supp(p))-

(2) 3 €i(Zi,¥i) p(zs,ys) 18 @ fuzzy 1-chain with boundary 0 in (u, p) where
(z:,u:) € supp(pg) if and only if Y €i(zi, yi) is a I-chain with bound-
ary 0 in (supp(n), supp(pg))-

A (fuzzy) l-chain with boundary 0 in (u, p) is called a (fuzzy) cycle
vector.

Definition 2.11

(1) 3 €i(Ti, Yi)p(z, y:) @5 @ coboundary of (u, p) where (zi,y:) € supp(p)
if and only if 5 €:(z:,yi) is a coboundary of (supp(u), supp(p))-

(2) 5 €i(Zi: i) penysy is @ fuzay coboundary of (u, p) where (zi,y:) €
supp(pe) if and only if Y €i(zi,y:) is a coboundary of (supp(n),
supp(pE))-

8§’ C S, is called a (fuzzy) cocycle of (u, p) if and only if foot(S’) is a
cocycle of ((supp(x). supp(pk))) (supp(x), supp(p))-

(Fuzzy) Cycle Set and (Fuzzy) Cocycle Set
Definition 2.12

(1) The set of all (fuzzy) cycle vectors of (i, p) is called the (fuzzy) cycle
set of (u, p).

(2) The set of all (fuzzy) coboundaries of (u, p) is called the (fuzzy)
cocycle set of (u, p).

The following examples show that the fuzzy cycle, cycle, fuzzy cocycle,
and cocycle sets are not and do not necessarily generate vector spaces over
Zs.

Example 2.9 Let V = {t,u,v,w} and X = {(¢,u),(u,v), (v,w), (w,t),
(t,v)}. Define the fuzzy subsets p of V and p of X as follows: pu(z) =1
forallz € V, p(t,u) = p(u,v) = 1, p(v,w) = p(w,t) = 1/2, and p(t,v) =
1/4. Then the cycle set is {(t,u)1 + (¢, v)1 + (t.v)1/4, (v, w)1/2 + (w, )12 +
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(t,v)1/4, (8, u)1+(2, )1+ (v, w)1 2+ (w, t)1/2,01/4, 0172} . The fuzzy cycle set
is {(t, )1+ (v, V)1 + (v, w)1 /2 + (w,t)1/2,01/2}. The cocycle set is {(t,u); +
(¢, v)17a+ (w: t)1/2, (1, V)1 + (8, )14 + (v, W) 12, (8, w)1 + (, )1, (v, w)1 /2 +
(w, )12, (W, )12+t v)17a+ (w, 0)1, (8, u)1 + (8, 0) 178+ (v, w) 1 2, (W, )12+
(t.u)1 + (v, v)1 + (v,w)1/2,01/4,01/2}. The fuzzy cocycle set is {(t,u); +
(w,t)1/2, (u,v)1 + (v,w)1/2, (t, )1 + (u, )1, (v, w)1/2 + (W, t)1 /2, (w,t)1/2 +
('U,'U)l, (tsu)l + (‘U, w)l/2$ (ws t)1/2 + (tsu)l + (‘LL, v)l + ('U,’LU)I/Q, 01/2}' The
cycle set and cocycle set are not and do not generate vector spaces over Zo
because of the presence of 0,/ and 0,/4. Note also that in the cycle set,
((t’u)l + (u, ‘U)] + (tav)1/4) + ((‘U, w)1/2 + (w7 t)1/2 + (t$v)l/4) = (tlu)l
+ (u,9)1 + (v,w)172 + (w,t)12 + 0174 # (t,u)1 + (w,0)1 + (v, w)1/2 +
(w,t)1/2- The fuzzy cycle set is a vector space over Zy in this example. The
fuzzy cocycle set is not a vector space over Zy since ((v,w)y/2 + (w,t)1/2)
+ (w, )2 + (Guh + (wv)1 + (v, w)172) = (Gu) + (W) + 012 #
(t,u)1 + (w,v)1.

Example 2.10 Let V, u, and X be as in Fxample 2.8. Let X' = X U
{(u,w)}. Define the fuzzy subset p' of X' by p' = p on X and p'(u,w) =
1/8. Then the fuzzy cycle set and the fuzzy cocycle set of (u, p') coincides
with the cycle set and the cocycle set of (1, p) of Example 2.8, respectively.

Examples 2.8 and 2.9 illustrate the results which follow.

Let CS(y, p), FCS(1, p), CoS(u, p), and FCoS(y, p) denote the cycle set,
the fuzzy cycle set, the cocycle set, and the fuzzy cocycle set of (u,p),
respectively. When the fuzzy graph (u, p) is understood, we sometimes write
CS, FCS, CoS, and FCoS for these sets, respectively.

We now show that even though CS, FCS, CoS, and FCoS are not neces-
sarily vector spaces over Z,, they are nearly so. In fact, it will be clear by
the following results that the concepts of (fuzzy) twigs and (fuzzy) chords
introduced here will have consequences similar to what their counterparts
have in the crisp case.

For ease of notation, we sometimes use the notation e, f,or g for members
of supp(p).

Clearly, CS, FCS, CoS, and FCoS are subsets of S, = {¢; | e € supp(p),
t € (0,1]}U{0: | t € (0,1]}. Let S be a subset of S,. We let < S >
denote the intersection of all subsemigroups of S, which contain S. Then
< S > is the smallest subsemigroup of S, which contains S. Let S* =
{(e1)s, + ...+ (en)t, | (€i)e, € S, =1,..,n,n € N} where N denotes the
set of positive integers. Then S¥ is a subsemigroup of S,.

Theorem 2.29 <CS > = (C5)* = CSU{ea+0; | €a €CS. 0y € (CS)*}.
< CS > has Oy, as its identity where m = v{b| 0, € (CS)*}.
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Proof. Since (CS)* is a subsemigroup of S, which contains CS, < CS >
C (CS)*. However, it is clear that < CS > D (CS)* since < CS > is
closed under +. Thus < CS > = (CS)*. Clearly < CS > D CS U {e, + 0,
| ea € CS, 0, € (CS)*}. Now foot(CS) is a vector space over Zp. Let
9, fo €CS. Then g+ f € foot(CS). Also g:+ fs = (9+ f)r wherer = tAs.
Now g; = (ul,'vl)ll + .4 (%n,vn)s, and fs = (Pl:‘h)s, + ot (Pmym) s
where (u;,v:), (pj,q;) € X,i=1,.,nand j =1,..,m. Let I = {(u;, ) |
i=1,..,n}N{(pj,q;) | 7 =1,...,m}. Suppose that I # (. By rearranging
the summands in the representations of g; and f, if necessary, we have g,
+ fo = (u1,v1)e, + ot (2iz1,vic1)e;,+ (P1,01)sy + o F (Pj—1.95-1)s,_, +
0, where Op = (u;, vi)e; + -t (Un, Vn)t, + (pijj)s, + ot (PmsGm)sp, b=
/\{ ti,....tn, Sy, ...,Sm}, and I = {(ui,vi),..., (un,'un)} = {(p_,-,qj),...,
(Pm,gm)}. Now (u1,v1) + ..t (vi—1,%-1) + (P1,q1) +.F (Pj-1,95-1)
€ foot(CS) since foot( CS) is a vector space over Zy. Also (g + f)e =
(u1,v1)e, + oot (Wim1:vi-1)t, + (P1o@1)s, + -+ (Pj—1,95-1)s,_,, Where
a = A{t1,....ti—1, S1,...,8j—1}. Now (g+ f)r + 0 = (¢ + f)a + 0p. Hence
g+ fs €CSU{ea+0p | e €CS, 0p € (CS)*}. That is, the sum of any
two elements from CS is in CS U {ea + 0y | € € CS, 0p € (CS)*}. From
this it follows easily that (CS)* C CSU {ex+ 0y | €. € CS, 0, € (CS)T}.
The case where I = () is similar. ll

Corollary 2.30 < FCS > = (FCS)* = FCSU{e,+0p | €, € FCS, 0y €
(FCS)*}. < FCS > has 0y, as its identity where m = V{b | 0y € (FCS)*}.

Proof. FCS is the cycle set of (g, pg). B
In a similar manner, we obtain the next two results.

Theorem 2.31 < CoS > = (Co S)* = CoSU {ea + 04 | ex € CoS, 0y €
(CoS)*}. < CoS > has On, as its identity where m = V{b| 0y € (CoS)*}. W

Corollary 2.32 < FCoS > = ( FCoS)* = FCoSU{e, +0 | e, € FCoS,
0» € (FCoS)*}. < FCoS > has Om as its identity where m = V{b| 0y €
(FCoS)*}. N

Since CS, FCS, Co S, and FCoS are nearly vector spaces over Z;, we
can define the (fuzzy) cycle rank and (fuzzy) cocycle rank of a fuzzy graph
in a meaningful way.

Definition 2.13 The cycle rank of (p, p), written m(u, p), is defined to be
m(p,p) = V{ X ti | (€:), €CS, i =1,....,n,{e1,...,en} is a basis for
foot(CS)}. The fuzzy cycle rank of (u,p), written fm(u,p), is defined to
be the cycle rank of (i, pg). If {e1,...,en} is a basis for foot(CS) such that
m(p, p) = Y iy ti, where (e;)y, €CS, i =1,...,n, then {e,....en} is called
a cycle basis of < CS > . If {e1,...,en} is a basis for foot(FCS(u,p))
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FIGURE 2.5 Non-isomorphic fuzzy graphs with the same cycle rank.
a b a b

such that fm(p,p) = Y i ti, where (&), € FCS(p,p), i = 1,...,n, then

1=1

{e1,...,en} is called a fuzzy cycle basis of < CS(u,p) > .

Theorem 2.33 Let {e),...,en} be a cycle basis of < CS > . ThenV e; €
CS, there is a reordering of ey, ...,en such that e; = (e1)t,+ .- + (€m)tm,
m < n, where t; = p(e;), i =1,...,m.

Proof. Since {ey,....e,} is a basis for foot(CS), there is a reordering of
€. ...,e, such that e = e; +... + e, m < n. Suppose that ¢ >t} A ... Al
Then there is a t;, 2 = 1,...,m, such that t > t;. Now e ¢< {ey + ... +
e }\{e:} > . Hence ({e; + ... + en} \ {€:}) U {e} is a basis for foot(CS).
However this contradicts the hypothesis that {ey,...,e,} is a cycle basis of
< CS >sincet > t;. Thust < t; A... Aty,. Now e = (uy,v1) + ... + (urvy)
where (u;,v;) €V x V,i=1,...,7. Hence e; = (u1,v1)a, + .. + (Ur,¥r)a,
and (e1)¢, + - + (em)t,. = (¥1,V1)a, + - + (Ur,Vr)a, + Oq for some
a € (0,1] where p(ui,v;) =a;,i=1,...,r,and t; A... Aty = a1 A... Aa- Aa.
NowaiA..AarAa<ajA..Nar=t<tHhA.. At = a1 A...ANarAa.
Hencet = t; A ... At,, and 50 e; = (€1),+ ... + (em)s,,.- M

Corollary 2.34 Let {ey,...,en} be a fuzzy cycle basis of < CS(p,p) > .
Then V e; € FCS(u, p). there is a reordering of e, ...,en such that e, =
(e1)e, + --- + (m)t,n. m < n, wheret; = p(e;), i =1,...,m.

Proof. FCS is the cycle set of (1, pg) and the fuzzy cycle rank of (p, p) is
the cycle rank of (u, py). W

The following graphs have the same cycle rank, but they are of course
not isomorphic since one has four vertices and the other has five vertices.

Definition 2.14 The cocycle rank of (u, p), written m (i, p), is defined
to be

me(p,p) = V{ Si  ti | (€i)e, €COS, i = 1,....n,{e1,...,en}
is a basis for foot(CoS)}. The fuzzy cocycle rank of (i, p), written fm.(u. p),
is defined to be the cocycle rank of (u,pg). If {€1,....,en} is a basis for
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foot(CoS) such that mc(p,p) = Y i, ti, where (&), € CoS, i = 1,...,n,
then {e1,...,en} is called a cocycle basis of < CoS > . If {e1,...,en} is
a basis for foot(FCoS(u,p)) such that fmc(p,p) = 3 i, ti, where (&),
€ FCoS(u,p), i = 1,...,n, then {e1,...,en} is called a fuzzy cocycle basis
of < CS(p,p) > .

In a similar manner, we obtain the next two results.

Theorem 2.35 Let {e1,....,en} be a cocycle basis of < CoS > . Then ¥V
e; € CoS, there is a reordering of ey, ...,e, such that e, = (e1)y,+ ... +
(€m)t., m < n, where t; = p(e;), i=1,..,m. B

Corollary 2.36 Let {ej,...,en} be a fuzzy cocycle basis of < CS(u,p) > .
Then ¥ e, € FCS(u, p), there is a reordering of ei, ..., e, such that e, =
(e1)e,+ - + (em)t,., m < m, where t; = p(e;), i=1,..,m. B

2.2 Fuzzy Line Graphs

The results of this section are taken from [29]. The line graph, L(G), of a
graph G is the intersection graph of the set of edges of G. Hence the vertices
of L(G) are the edges of G with two vertices of L(G) adjacent whenever
the corresponding edges of G are. In this section, the concept of a fuzzy
line graph is introduced and its basic properties are developed. We give
a necessary and sufficient condition for a fuzzy graph to be isomorphic to
its corresponding fuzzy line graph. We also examine when the isomorphism
between two fuzzy graphs follows from an isomorphism of their correspond-
ing fuzzy line graphs. A necessary and sufficient condition for a fuzzy line
graph to be the fuzzy line graph of some fuzzy graph is also presented in
this section. Let G = (V. X) and G’ = (V’, X’) be graphs. If 4 is a fuzzy
subset of V and p is a fuzzy subset of V x V such that (u,p) is a fuzzy
graph and supp(p) C X, we call (. p) a partial fuzzy subgraph of G.

Definition 2.15 Let (u,p) and (i',p’) be partial fuzzy subgraphs of G and
G', respectively. Let f be a one-to-one function of V onto V' . Then

(1) f is called a (weak) vertex-isomorphism of (u, p) onto (¢, p') if and
only,g’r ( \;’;) €V, (u(v) < ' (f(v)) and supp(r’) = (f(supp(p))) n(v)
= u'(f(v)).

(2) f is called a (weak) line-isomorphism of (u,p) onto (¢, p’) if and
only if ¥(u,v) € X, (p(u,v) < p'(f(u). f(v)) and supp(p') = {(f(w),
f(@) | (u,v) € supp(p)}) p(u.v) = p'(f(u). f(v)).
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If f is a (weak) vertex-isomorphism and a (weak) line isomorphism of
(i, p) onto (u',p'), then f is called a (weak) isomorphism of (u,p) onto
(¢, p"). If (1, p) is isomorphic to (1, p’), then we write (u, p) ~ (&', p').

Our definition of isomorphism is equivalent to the one in [5, Definition
3.2, p. 160]. For homomorphisms [5, Definition 3.1, p. 159], our definitions of
vertex-isomorphism and line-isomorphism are equivalent to the definitions
of weak isomorphism and co-weak isomorphism, respectively, which appear
in [5, Definition 3.3, 3.5, p.160]. We use the term ‘weak’ in a different
manner than in [5].

Let G = (V, X) beagraph where V = {v;,,...,v,}. Let S; = {v;,z4a,...,
Tig, } where z;; € X and z;; has v; as a vertex, j =1,...,q;; i =1,...,n.
Let S = {S1,...,Sn}. Let T = {(S;,5;) | Si,S; € S, SinS; # 0,7 # j}.
Then Z(S) = (S,T) is an intersection graph and G ~ Z(S). Any partial
fuzzy subgraph (¢, ) of Z(S) with supp(v) = T is called a fuzzy intersection
graph.

Let (u, p) be a partial fuzzy subgraph of G. Let Z(S) be the intersection
graph described above. Define the fuzzy subsets ¢, y of S and T, respectively,
as follows:

vS; € S, «(S;) = p(vs);

vS: € T, ¥(S:, S5) = p(vi, v;)-

Proposition 2.37 Let (u,p) be a partial fuzzy subgraph of G . Then
(1) (¢,7) is a partial fuzzy subgraph of I(S);
(2) (.p) = (1,7)-

Proof. (1) ¥(S:,5;) = p(vi,v;) < p(vi) A p(v;) = o(S:) A e(S;)

(2) Define f : V. — S by f(v;) = S;,i =1,...,n. Clearly, f is a one-to-
one function of V onto S. Now (v;,v;) € X if and only if (S;,S;) € T and
so T = {(f(v), f(v;)) | (vi,v;) € X}. Also o(f(v:)) = «(S;) = p(v;) and
Y(f(v:), f(v;)) = ¥(Si, S;j) = p(vi,v;). Thus f is an isomorphism of (u, p)
onto (¢,v) . A

Let Z(S) be the intersection graph of (V,X). Let (¢,7) be the fuzzy
subgraph of Z(S) as defined above. We call (¢,7) the fuzzy intersection
graph of (u, p). Proposition 2.37 shows that any fuzzy graph is isomorphic
to a fuzzy intersection graph.

Now L(G), the line graph of G, is by definition the intersection graph
I(X). That is, L(G) = (Z,W) where Z = {{z}U{uz,vz} |z € X, uz, v, €
V.z = (uz,vg)} and W = {(S;,Sy) | SzNSy #0, z € X, z # y} and
where S; = {z} U {uz,v:}, z € X. Let (u,p) be a partial fuzzy subgraph
of G. Define the fuzzy subsets A, w of Z, W, respectively, as follows:

VS, € Z,\(S.) = pla);

V(Sz,Sy) € W. w(Sz, Sy) = p(z) A p(y)-
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Proposition 2.38 (), w) is a fuzzy subgraph of L(G), called the fuzzy line
graph corresponding to (u,p).

Proof. w(Sz,5,) = p(z) A p(y) = A(Sz) A A(S,). B

We recall that a cutpoint of a graph is a vertex whose deletion increases
the number of components, and a bridge is such an edge. Every cutpoint
of L(G) is a bridge of G which is not an endline, and conversely, {20, p.71].

Recall that (u,v) € X is defined to be a bridge of (u,p) if and only if
deleting (u,v) reduces the strength of connectedness between some pair of
vertices. Also, recall that v € V is defined to be a cutpoint in (g, p) if and
only if deleting v reduces the strength of connectedness between some pair
of vertices not including v.

The following example shows that the relationship between cutpoints in
L(G) and bridges in G does not carry over to the fuzzy case for the above
definitions of cutpoints and bridges.

Example 2.11 Let Gibe the graph defined in [20, p.72], that is, G1 =
(V,X) where V. = {v1,v2,v3,v4} and X = {z; = (v1,v2),Z2 = (v1,v3),
I3 = (02,v3),24 = ('03,'04)}- Let /J'(vl) = [_L(‘Ug) = “(v3) = ,u(v4) =1,
o(x1) = p(z3) = 1, and p(z2) = p(z4) = 1/2. Then A(Sz,) = A(Sz;) =
1, X(Sz,) = AX(Sz,) =1/2, andw(Sz,,Sz,) =1, w(Sz,, Sz;) = W(Szy,Sz,) =
w(Sz,,Sz,) = 1/2. If we delete x; from Gy, then the strength of connect-
edness between v, and ve is 1/2 = p(x2) A p(z3) while the strength of con-
nectedness between vy and ve before the deletion of xy is 1 = p(z;). Thus
z) is a bridge of (1, p) (and not an endline of G1). However the strength of
connectedness between any pair of vertices S;,,Sz,, Sz, ts 1/2 before and
after the deletion of Sz,. Thus Sz, is not a cutvertez of (A, w).

Proposition 2.39 Let (u,p) and (¢, p’) be partial fuzzy subgraphs of G
and G', respectively. If f is a weak isomorphism of (u, p) onto (¢',p’), then
f is an isomorphism of (supp(), supp(p)) onto (supp(y'), supp(p’))-

Proof. v € supp(u) & f(v) € supp() and (u,v) € supp(p) & (f(u),
f(v)) € supp(p’). B

Proposition 2.40 If (\ w) is the fuzzy line graph of (u, p), then (supp()),
supp(w)) is the line graph of (supp(p), supp(p)).

Proof. (u,p) is a partial fuzzy subgraph of G and (\,w) is a partial fuzzy
subgraph of L(G). Now A(S;) = p(z) Vz € X and so S; € supp(A) &z €
supp(p). Also w(Sz,Sy) = p(z) A p(y) Y(Sz,Sy) € W and so supp(w) =
{(Sz:8y) | S=N Sy # 0, z,y € supp(p), z # y}. A
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We also see in Proposition 2.40 that (A |supp(r), @ lsupp(w)) is the fuzzy
line graph corresponding to (& |supp(u)+ 2 lsupp(p))-We now give a necessary
and sufficient condition for fuzzy graph (g, p) to be isomorphic to its fuzzy
line graph (A,w) .

Theorem 2.41 Let (A, w) be the fuzzy line graph corresponding to (u, p).
Suppose that (supp(u), supp(p)) is connected. Then

(1) 3 a weak isomorphism of (x,p) onto (\,w) if and only if (supp(u),
supp(p)) is a cycle and Vv € supp(p), u(v) = p(z), that is, p and p
are constant functions of supp(u) and supp(p), respectively, taking
on the same value.

(2) If f is a weak isomorphism of (u, p) onto (A,w), then f is an isomor-
phism.

Proof. Suppose that f is a weak isomorphism of (y,p) onto (A,w). By
Proposition 2.39, f is an isomorphism of (supp(u), supp(p)) onto (supp(),
supp(w)). By Proposition 2.40, (supp(x), supp(p)) is a cycle, [20, Theorem

8.2, p.72. Let supp(p) = {v1,...,v,} and supp(p)
= {(v1,v2), (v2,v3),..., (vn,v1)} where vivavs ... v 01 is a cycle. Let p(v;)
= sy and p(vi,v141) =732 =1,...,n where v,4; = v;. Then for s,41 = s,

r; <siAsip1,i=1,...,n. (2.1)

Now supp(A) = {S(,v:4,) | ¢ = 1,...,n} and supp(w) = {(S(v;,viy1)s
Stvigrwig2)) |1 =1,...,n=1}. Alsofor 7 p1 =71, AM(S(0;,0i41)) = P(Vi, Vig1)
=7 and W(S(v,v,41)s S(vis1,vit2)) = P(Vi, Vig1)AP(Vi1, Vig2) = TilATiq1, 8 =
1,...,n, where v,42 = v2. Since f is an isomorphism of (supp(x), supp(p))
onto (supp()), supp(w)), f maps supp(u) one to one onto supp(A) =
{8 v2)1 -+ -+ S(wn,v1) }- Also f preserves adjacency. Hence f induces a per-
mutation 7 of {1,...,n} such that f(v;) = S(vciysvmeiysr) a0d (Vi, Vig1) —
(f(v:), f(vig1)) = (S('-'vr(x)»'mu+|) S(v«(;—x)»"n:+1)+x))*2 L,...,n—1 Now
S = lu(vl) < A(f(’l),)) ( (Vi) Vg ,),1)) = Tx(3) and T: = P('Uu Uz+l) <
W(f(:), F(0i41)) = WS (wrsy,vmenrn)s (v,,(,+|),u,.-(,+1)+1)) P(Vr(i)s Vn(i)+1) A
P(Vn(i41)s Va(i+1)+1) = Tn(i) A Ta(i+1), ¢ = 1,...,n. That is,

8i < Tr(y) and r; < Ta@) N Tr+1),t =1,..., 7. (2.2)

By the second part of (2 2), we have that r; <7, i=1,...,n, and so
Tri) < Ta(n@): 1= 1,...,7. Contmumg, we have that r; 5 r,.(,) <...<
Txi) < 7i and so 7; = r,,(,), i=1,...,n, where 77%! is the identity map
By (2.2) again, we have r; < rp(ip1) = rig1,i = 1,...,n where 1y =17.
Hence by (2.1) and (2.2), 7y = ... =7, = 8 = ... = 5,. Thus we have
not only proved the conclusion about x and p being constant functions,
but we have also shown that (2) holds. Conversely, suppose that (supp(y).
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supp(p)) is a cycle and Vv € supp(u), Vz € supp(p), u(v) = p(z). By Propo-
sition 2.40, (supp()), supp(w)) is the line graph of (supp(x), supp(p)). Since
(supp(w), supp(p)) is a cycle, (supp(y), supp(p)) ~ (supp(}), supp(w)) by
[20, Theorem 8.2, p.72]. This isomorphism induces an isomorphism of (, p)
onto (\,w) since p(v) = p(z) Vv e V,Vv € X andsop=p= A =w on
their respective domains. ll

Theorem 2.42 Let (u,p) and (u',p’) be the partial fuzzy subgraphs of G
and G, respectively, such that (supp(u), supp(p)) and (supp(r'), supp(p’))
are connected. Let (A, w) and (\,w’) be the line graphs corresponding to
(u,p) and (', p'), respectively. Suppose that it is not the case that one of
(supp(p), supp(p)) and (supp(r'), supp(p')) is K3 and the other is K, 3. If
(A w) =~ (N, '), then (u,p) and (1, p') are line-isomorphic.

Proof. Since (\,w) ~ (X,w'), (supp()), supp(w)) ~ (supp(}’), supp(w’))
by Proposition 2.39. Since (supp()), supp(w)) and (supp()’), supp(w')) are
line graphs of (supp(k), supp(p)) and (supp(x'), supp(p’)) respectively, by
Proposition 2.40, we have that (supp(y), supp(p)) ~ (supp(y’), supp(p’))
by [20, Theorem 8.3, p.72]. Let g denote the isomorphism of (A,w) onto
(V,w') and f the isomorphism of (supp(u), supp(p)) onto (supp(y'),
supp(p’)). Then /\(S(u’v)) = /\'(g(S(u,v))) = )\I(S(f(u),f(v))) where the lat-
ter equality holds the proof of [20, Theorem 8.3, p.72] and so p(u,v) =
P (f(u), f(v)). Hence (u, p) and (¢', p’) are line isomorphic. W

Proposition 2.43 Let (7,v) be a partial fuzzy subgraph of L(G). Then
(7,v) is a fuzzy line graph of some partial fuzzy subgraph of G if and only
ifV(Sz, Sy) € W, v(Sz,Sy) = 7(Sz) A 7(Sy)-

Proof. Suppose that v(S;,Sy,) = 7(Sz) A 7(Sy) V(Sz,Sy) € W.Vz € X,
define p(z) = 7(Sz). Then v(Sz,Sy) = 7(Sz) A 7(Sy) = p(z) A p(y). Any
u that yields the property p(u,v) < u(u) A p(v) will suffice, e.g., p(v) =1
Vv € V. The converse is immediate. ll

Not every graph is a line graph of some graph . The following result tells
us when a fuzzy graph is a fuzzy line graph of some fuzzy graph.

Theorem 2.44 (p,p) is a fuzzy line graph if and only if (supp(u), supp(p))
is a line graph and V(u,v) € supp(p), p(u, v) = p(u) A n(v).

Proof. Suppose that (u,p) is a fuzzy line graph. Then the conclusion
holds by the Proposition 2.40 and 2.43. Conversely , suppose that (supp(u),
supp(p)) is a line graph and V(u,v) € supp(p), p(u,v) = p(u) A u(v). Then
the conclusion holds from Proposition 2.43. B
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2.3 Fuzzy Interval Graphs

In this section, we present the results of [8]. Intersection graphs and, in par-
ticular, interval graphs are used extensively in mathematical modeling. Ap-
plications in archaeology, developmental psychology, ecological modeling,
mathematical sociology and organization theory are cited in [33]. These
disciplines all have components that are ambiguously defined, require sub-
jective evaluation, or are satisfied to differing degrees. They are active
areas of applications of fuzzy methods. It is therefore worthwhile to study
the extent that intersection graph results can be extended using fuzzy set
theory.

The intersection graph of a family (possibly with repeated members) of
sets is a graph with a vertex representing each member of the family and
an edge connecting two vertices if and only if the two sets have nonempty
intersection. Generally, loops are suppressed. If the family is composed of
intervals or is the edge set of a hypergraph, then the intersection graph is
called an interval graph or a line graph, respectively.

We prove a fuzzy analog of Marczewski’s theorem showing that every
fuzzy graph without loops is the intersection graph of some family of fuzzy
subsets. We show that the natural generalization of the Fulkerson and
Gross characterization of interval graphs fails. We also prove a natural
generalization of the Gilmore and Hoffman characterization.

Let G = (V,u,p) be a fuzzy graph. A fuzzy digraph is a triple D =
(V, p, 6), where u is a fuzzy subset of V and § is a fuzzy subset of V x V
such that 6(z,y) < p(z) A u(y). We note 6 need not be symmetric.

A fuzzy graph (fuzzy digraph) can be represented by an adjacency matriz,
where the rows and columns are indexed by the vertex set V and the z,y
entry is p(z,y)(6(z,y)). Vertex strength can be indicated by adding a
column indexed by p and letting the z, u entry be p(x).

Let t € [0,1]. Recall that the ¢ level graph of G is the crisp graph
G = (pt, p'). For a family F of fuzzy subsets, we define the ¢ level family
of F as Ft = {o! | a € F}.

Let a be a fuzzy subset of V. Recall that the height of a is h(a) =
V{a(z) | £ € V}. We construct a sequence of crisp level graphs in order
to see how a fuzzy subset’s structure changes between various levels. The-
orems characterizing a fuzzy property in terms of level set properties are
significant, in that such theorems demonstrate the extent to which the crisp
theory can be generalized. To formalize this sequence of graphs, we define
the fundamental sequence of a fuzzy graph G = (u, p) to be the ordered set

f5(G) = {u(z) >0 |z € V}U{p(z,y) > 0| z,y € V},

where we use the decreasing order inherited from the real interval [0, 1].
The first element listed in fs(G) is the maximal vertex strength while the
last element listed is the minimal nonzero edge strength.
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Fuzzy Intersection Graphs

We now define a fuzzy intersection graph and prove that every fuzzy graph
is the fuzzy intersection graph of some collection of fuzzy subsets.

Definition 2.16 Let F = {ay,...,an} be a finite family of fuzzy subsets of
a set V and consider F as a crisp vertez set. The fuzzy intersection graph
of F is the fuzzy graph Int(F) = (u,p) where p : F — [0,1] is defined by
w(a;) = h(as) and p: F x F — [0,1] is defined by
oy J Rleinaj)  ifi#j,
p(Ot,,OlJ) - { 0 if’i =j-
An edge {a;, a;j} in Definition 2.16 has zero strength if and only if a; Na;
is the zero function (empty intersection) or i = j (to preclude loops).
Note that in this section, we have a different notion of a fuzzy intersection
graph than in the previous section. For this reason, we use a different
notation. Recall that every graph G = (V,X) is an intersection graph:
For all z € V, let S, denote the union of {z} with the set of all edges

incident with z. It follows that G is isomorphic to the intersection graph
of {S; |z € V}.

Remark 1. If F = {oy,...,a,} is a family of fuzzy subsets of a set V
and t € [0,1], then Int(F*) = (Int(F))!. The graph Int(F*) has a vertex
representing o; € F if and only if h(a;) > ¢. The pair {(a)?, ()} is an
edge of Int(F?) if and only if ¢ # j and h(e; N ;) > ¢, (so (a)' N (o)t
is nonempty). These conditions also characterize the graph (Int(F))t. In
particular, if 7 is a family of crisp subsets of V, then the fuzzy intersection
graph and crisp intersection graph definitions coincide.

Theorem 2.45 (Fuzzy analog of Marczewski’s theorem [27]). If G =

(i, p) is a fuzzy graph (without loops), then for some family of fuzzy subsets
F, G = Int(F).

Proof. Let G = (u, p) be a fuzzy graph on V. For each = € V define the
anti-reflexive, symmetric fuzzy subset a; : V x V — [0,1] by

) iHfy=zandz==z,
p(z,2) fy=zand 2z #z,
ply,z) ify#zand z=u2,
0 ify#zand z #z.

az(y,z) =

We show G is the fuzzy intersection graph of 7 = {a,; | z € V}. By
definition a;(z,z) = u(z) > p(z,y) and so h(az) = p(z) as required. For
T # y a nonzero value of (a; N ay)(z,w) = az(z,w) A ay(z, w) occurs
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onlyif z = 2and y = w (or y = z and z = w). Thus h(a; Nay) =
(az Noy)(z,y) = p(z,y) and the desired result holds. M

Fuzzy Interval Graphs

The families of sets most often considered in connection with intersection
graphs are families of intervals of a linearly ordered set. This class of
interval graphs is central to many applications.

In both the crisp and fuzzy cases, distinct families of sets can have the
same intersection graph. In particular, the intersection properties of a
finite family of real intervals (fuzzy numbers) can be characterized by a
family of intervals (fuzzy intervals) defined on a finite set. Therefore, as
is common in interval graph theory [28], we restrict attention to intervals
(fuzzy intervals) with finite support.

We generalize two characterizations of (crisp) interval graphs. Theorem
2.47 gives the Fulkerson and Gross characterization [14] and Theorem 2.49
provides the Gilmore and Hoffman characterization [15]. Both theorems
make use of relationships between the finite number of points which define
the intervals and the cliques of the corresponding interval graph.

A clique of a graph is a maximal (with respect to set inclusion) complete
subgraph. It is important to note that we adopt the convention of naming
a clique by its vertex set. Clearly, if a vertex z is not a member of a clique
K, then there exists an z € K such that (z, z) is not an edge of the graph.
We generalize this concept in Definition 2.18.

Definition 2.17 Let V be a linearly ordered set. A fuzzy interval Z on V
is a normal, conver fuzzy subset of V [12]. That is, there exists anz € V
with Z(z) = 1 and the ordering w < y < z implies that Z(y) > T(w) AZ(2).
A fuzzy number is a fuzzy interval. A fuzzy interval graph is the fuzzy
intersection graph of a finite family of fuzzy intervals.

In Definition 2.17, we see that by normality of the fuzzy intervals, the
vertex set of a fuzzy interval graph is crisp.

Theorem 2.46 Let G = Int(F) be a fuzzy interval graph. Then for each
t € (0,1], the level graph G* is an interval graph.

Proof. Let G = Int(F) for a family of fuzzy intervals F = {ay,..., o}
For each t € (0, 1], convexity implies that each (a;)* € F* is a crisp interval.
By Remark 1, G* = (Int(F))* = Int(F*) and G* is an interval graph. il

Example 2.12 The fuzzy graph G defined by the adjacency matriz of Fig.
2.6 demonstrates that the converse of Theorem 2.46 is false. In Figure 2.6,
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FIGURE 2.6 A fuzzy graph that is not a fuzzy interval graph although
each cut level graph has an interval representation.
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we present a fuzzy graph that is not a fuzzy interval graph although each
cut level graph has an interval representation.

Before proceeding by contradiction, we note that G%® (see Figure 2.6(b))
has an interval representation. Let S, = {a} U {(a, f), (a,€),(a,d), (a.c¢)},
Sy = {8}, 5. = {c} U{(@,0), ()}, 54 = {d} U {(c,d), (@)}, Se = {e} U
{(e» f)v (av e)} and Sf = {f} U {(ay f)’ (ev f)}' Let {Saa S, Sca Sa, Sev Sf} be
our vertez set. Then it is easy to see the intervals of Figure 2.6(c) give
an appropriate representation. (For G%® see (d) and (e) and for G4 see
(f) and (g).) Suppose that G = Int(F), where the fuzzy interval v € F
corresponds to vertez v of G. Since h{cNe) = 0, we assume without loss
of generality that supp(c) lies strictly left of supp(e). An interval graph
theorem [13] states that since {a,c,d} defines a clique of G™, there exists
z, such that z; € a®8 NP8 Nd%8. Therefore, a(z1) A c(x1) Ad(z1) > 0.8.
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Similarly, there exists an x5 such that a(xs) A e(zs) A f(zs) > 0.8. Now
h(bNd) = 04 and h(bN f) = 04 imply b(z1) < 0.4 and b(zs) < 04,
respectively.

Continuing, h(bNc) = 0.6 and h(bNe) = 0.6 imply there exist z; and
z4 with b(z2) > 0.6 and b(z4) > 0.6. By the normality of b there ezists
z3 such that b(x3) = 1. By the converity of the fuzzy intervals and the
assumption that supp(c) lies strictly to the left of supp(e), the ordering of
these points must be T1 < To < 23 < 24 < T5, with 9 < z4.

Since a(x1) > 0.8, a(zs) > 0.8, and a is convez, it follows that a(z3) >
0.8. Hence h(anb) > 0.8. This contradicts h(aNb) = 0.6. Hence G is not
a fuzzy interval graph.

The Fulkerson and Gross Characterization

The Fulkerson and Gross characterization makes use of a correspondence
between the set of points on which the family of intervals is defined and
the set of cliques of the corresponding interval graph. We provide natural
generalizations of the (crisp) definitions and then show that for fuzzy graphs
this relationship holds only in one direction.

An interval graph theorem states that any set of intervals defining a
clique will have a common point. If one such point is associated with
each clique, the linear ordering of these points induces a linear ordering on
the cliques of G. Using this ordering the resulting vertex clique incidence
matrix has convex rows.

Conversely each convex row naturally defines the characteristic function
of a subinterval of the linearly ordered set of cliques. The graph G is
the intersection graph of this family of intervals. The following result is a
consequence of this argument.

Theorem 2.47 (Fulkerson and Gross [14]). A (crisp) graph G is an in-
terval graph if and only if there exists a linear ordering of the cliques of G
for which the vertex clique incidence matriz has convex rows.

Definition 2.18 Let G = (u,p) be a fuzzy graph. We say that a fuzzy
subset K defines a fuzzy clique of G if for each t € (0,1], K* induces a
clique of Gt. We associate with G a vertez clique incidence matriz where
the rows are indezed by the domain of p, the columns are indezed by the
family of all fuzzy cliques of G, and the z, K entry is K(z).

Remark 2. Suppose that G is a fuzzy graph with fs(G) = {r1,...,mn}
and let K be a fuzzy clique of G. The level sets of K define a sequence
K™ C ... C K™ where each K™ is a clique of G™. Conversely, any sequence
K, C --- C K, where each Kj; is a clique of G™ defines a fuzzy clique
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where K(x) = V{r; | z € K;}. Therefore, K is a clique of the t-level graph
G! if and only if K = K* for some fuzzy clique K.

Theorem 2.48 (Fuzzy analog of Fulkerson and Gross). Let G = (V, p) be
a fuzzy graph. Then the rows of any vertex clique incidence matriz of G
define a family of fuzzy subsets F for which G = Int(F). Further, if there
exists an ordering of the fuzzy cliques of G such that each row of the vertez
clique incidence matriz is convez, then G is a fuzzy interval graph.

Proof. Let I = {K;,...,K,} be an ordered family of the fuzzy cliques of
G and let M be the vertex clique incidence matrix where the columns are
given this ordering. For each z € V define the fuzzy set J; : I — [0,1]
by J-(K;) = Ki(z) and let F = {J; | £ € V}. Since each vertex z has
strength 1, = is contained in the 1-level cut of some fuzzy clique X; in I.
Therefore, J(K;) = K;(z) =1 and J; is normal.

We must show for z # y € V that h(J; N Jy) = p(z,y). Also assuming
that each row is convex implies that each 7, is a fuzzy interval and that
G is a fuzzy interval graph. By definition, if z # y, then A(J, N J,) =
V{(Tz N T)(Ks) | K € T} = V{T=(Ki) A Ty(K) | Ki € T} = V{Ki(z) A
Ki(y) | Ki eI} =v{t€[0,1] | K; € I and (z,y) is an edge of (K;)*}.

The edge strength p(z,y) = t is the maximal value where (z,y) is an
edge of G* so is contained in a clique of G*. Thus h(J; N J,) = p(z,y) as
required. Il

Example 2.13 The fuzzy graph G given by the incidence matriz in Fig.
2.7 shows that the converse of Theorem 2.48 is false. If the set F of fuzzy
intervals is defined by the rows of matriz F, then G = Int(F). Figure 2.7
also shows the cut level graphs of G and a vertez clique incidence matriz M
for G. One may verify by ezhaustion that no ordering of the fuzzy cliques
produces a vertex clique incidence matriz M with conver rows.

a b c d 1 2 3 4
a0 051 0 L1 050 0
c_ b |05 0 0505 p_ I |05 05 051
“cl1 o050 1 =Ll1 1 1 o5
dlo 051 o0 Lo o 1 05

Ki Ky Ks Ki

a 1 05 0 0

b 105 1 05 1

M= 11 o051 o05

dlo o0 1 05
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FIGURE 2.7 A fuzzy interval graph where any vertex clique incidence
matrix has a row that is not convex. (a) represents G* (b) represents G%.

a b a b
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The Gilmore and Hoffman Characterization

Let G = (V, X) be a graph and D be a directed graph. In the remainder
of the section, we use the notation (z,y) for an edge of G and < z,y >
for a directed edge in D. We begin with several graph theory definitions
and state the Gilmore and Hoffman characterization. In the interest of
completeness, we provide a reasonably detailed proof of this result. We then
give corresponding fuzzy definitions, and conclude with the result that the
Gilmore and Hoffman characterization generalizes exactly for fuzzy interval
graphs.

Recall that a cycle of length n in a graph G = (V, X) is a sequence
zo, ..., Ln of distinct vertices where (zg,z,) € X and 1 < ¢ < n implies
(zi=1, z;) € X. A graph is chordal or triangulated if each cycle with
n > 4 has a chord. Formally, if there exist integers j # 0 or k£ # n with
0<j<k-1<nand(zjzx) € X.

An orientation of a graph G = (V, X) is a directed graph G4 = (V, A)
that has G as its underlying graph. That is, (z,y) € X implies that
<z,y>€ Aor < y,x > € A but not both. A graph G is transitively
orientable if there exists an orientation of G for which < u,v > € A and
<v,w > € A implies < u,w > € A. Further, if G = (V, X) is a graph,
the complement of G, denoted by G°, is the graph with vertex set V and
edge set consisting of those edges which are not in X. For a fuzzy graph
G = (u,p), we let G = (1,1 - p).

We merely sketch the proof of the following result.

Theorem 2.49 (Gilmore and Hoffman (15]). A graph G = (V, X) is an
interval graph if and only if it satisfies the following two conditions:

(1) each subgraph of G induced by four vertices is chordal,

(2) G¢ is transitively orientable.
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FIGURE 2.8 The clique ordering is well defined.
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Proof. Further details and examples can be found in [33]. That an interval
graph G (hence each four vertex subgraph) is chordal is an immediate
consequence of the definitions. To orient G¢, let < a,b > € A if and only
if (a,b) is not an edge of G and the interval corresponding to a lies strictly
to the left of the interval corresponding to b.

If each subgraph of G induced by four vertices is chordal and A is a
transitive orientation of G¢, we first define a linear ordering < on the set of
all cliques of G as follows. For cliques K # L of G there exist £ € K with
z ¢ L and in turn y € L such that (z,y) ¢ X; otherwise {x} U L induces a
complete subgraph of G properly containing L. Define K < L if and only
if<z,y>€A

We show < is well defined by contradiction. Suppose that (z,z’) is in
clique K, (y,¥’) is in clique L, < z,y > € A and < y',z’ > € A (Fig.
2.8). Since zy’yx’z would be a cordless 4 cycle, we assume without loss
of generality that (z,y’) ¢ X. However, A is transitive so < z,y’ > € A
implies (z,z’) ¢ X, a contradiction. Similarly, < 3’,z > € A implies
(¥',y) ¢ X, a contradiction.

For transitivity let < z,y > € Adefine K < Landlet L< M. f ye M
then K < M as required. If y ¢ M there exists z € M with (y,2) ¢ X
then L < M implies < y,z > € A. Transitivity of A gives < z,z > € A
and K < M as required.

A well-known graph theory theorem states that any complete transitive
relation on a set defines a linear ordering of the set. Therefore, < linearly
orders the cliques of G. Since A is anti-symmetricand < z,y > € A,z ¢ M
whenever L < M. Therefore, the vertex clique incidence matrix with the
columns ordered by < has convex rows. As in Theorem 2.47, these rows
define a family of intervals which have G as its intersection graph. ll

We now show using natural generalizations of the definitions that fuzzy
interval graphs are chordal and have transitively orientable compliments.

The definition of a cycle in the next definition is equivalent to the one
previously given. For convenience sake, we use this form in this section.
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Definition 2.19 A cycle of length n in a fuzzy graph is a sequence of
distinct vertices xo,...,zn, where p(xo,z,) > 0 and if 1 < i < n, then
p(zi—1,z;) > 0. A fuzzy graph G = (u, p) is chordal if for each cycle with
n > 4, there exist integers j #0 or k #n such that0< j<k—1<n and
P(Ij,xk) 2 /\{P(xi-l:zi) I 1= 1)2s "'7”} A p(IO’In)~

A fuzzy graph G = (u, p) is chordal if and only if for each t € (0, 1], the
t-level graph of G is chordal (triangulated).

Theorem 2.50 If G is a fuzzy interval graph, then G is chordal.

Proof. By Theorem 2.46, each cut level graph G! is an interval graph. As
in the proof of Theorem 2.49 any interval graph is chordal. The result then
follows from Definition 2.19.

To avoid confusion when dealing with cut level graphs, we base an ori-
entation of a fuzzy graph on an orientation of its underlying graph.

Definition 2.20 Let G = (p, p) be a fuzzy graph with fs(G) = {ry,...,mn}
and let A be an orientation of G™. Then the orientation of G by A is the
fuzzy digraph G4 = (1, p) where

_J plzy) if<z,y> €A
pA(<x’y>)—{0 if<z,y> ¢A.

The fuzzy graph G = (p,p) is transitively orientable if there exists an
orientation which is transitive. Formally, p4(< z,y >) Aps(< y,z >) <
pa(< z,z>).

The t level graph of G4 has arc set {< z,y > | pa(< z,y >) > t}.
Therefore, an orientation of a fuzzy graph induces consistent orientations on
each member of the fundamental sequence of cut level graphs. Conversely,
it is possible to have a sequence of transitively oriented subgraphs G; C
G2 C G3 where the transitive orientation of G, does not induce a transitive
orientation of G, and the transitive orientation of G5 cannot be extended
to a transitive orientation of Gj.

Lemma 2.51 Suppose that G = Int(F) is a fuzzy interval graph. Then
there ezists an orientation A that induces a transitive orientation of G€.

Proof. Assume (o, 3) is a nontrivial edge of G°. Then h(aNB) <r; =1
and o™ and ™ are disjoint. We let < o, 3 > € A if and only if o™ lies
strictly left of 8™!. Clearly A is a well-defined and transitive orientation of
G.



54 2. FUZZY GRAPHS

FIGURE 2.9 A fuzzy graph that is not transitively orientable. (a) repre-
sents (G™)¢, (b) represents (G™)°, and (c) represents (G™)°.
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Example 2.14 The fuzzy graph of Ezample 2.12. (Fig. 2.6) is not a fuzzy
interval graph because any orientation of (d,e) shows there is no transitive
orientation of G¢. Fig. 2.9 shows the cut level graphs of G° with < d,e >
€ A. Note that (G1)¢ = (G°)1~72,(G™)¢ = (G°)'~™ and (G™)° = (G°)!,
where 71 = 1 here.

Theorem 2.52 (Fuzzy analog of the Gilmore and Hoffman characteriza-
tion). A fuzzy graph G = (u, p) is a fuzzy interval graph if and only if

(1) for all x € supp(p) =V, pu(z) = 1;
(2) each fuzzy subgraph of G induced by four vertices is chordal;
(8) G¢ is transitively orientable. B

If G is a fuzzy interval graph the three conditions follow from Definitions
2.16 and 2.17, Theorem 2.50, and Lemma 2.51, respectively.

For the remainder of the section we assume each fuzzy subgraph of
G = (V,p) induced by four vertices is chordal and that A is a transi-
tive orientation of G¢. Because the proof that G is a fuzzy interval graph
is quite involved we first outline the proof. Details are given in Definition
2.21 through Lemma 2.55; the algorithm is applied in Example 2.15. For
notational convenience we let X;; denote the r; cut level set of the fuzzy
set KC;.

By Theorem 2.48 the rows of any vertex clique incidence matrix of G
define a family of fuzzy subsets that has G as its fuzzy intersection graph.
We define a linear ordering < of the fuzzy cliques of G. If < has a property
we call being cut level consistent, the rows of the vertex clique incidence
matrix will be convex and the result follows immediately from Theorem
2.48.

If < is not level consistent then some row is not convex. We modify
this matrix in a “bottom up” construction using the notion of cut level
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consistent to determine which columns are modified or deleted from the
vertex clique incidence matrix. We complete the proof by showing that in
the modified matrix each row is normal and convex and that G is the fuzzy
intersection graph of the family of fuzzy intervals defined by the rows.

By the discussion following Definitions 2.19 and 2.20 each level graph G*
is chordal and has a transitively orientable complement. Therefore, each
G! is an interval graph and there exists a linear ordering <; on the family of
all cliques of G*. We now establish definitions that will be used extensively
in the discussion below.

Definition 2.21 Define the relation < on the family of all fuzzy cliques of
G as follows. Let K < L if and only if K* <, L where t is the smallest
element of fs(G) such that K* # L'. The lezicographic ordering < is
clearly well defined, complete, and transitive. Therefore, < defines a linear
ordering on the family of all fuzzy cliques of G.

Definition 2.22 Let G satisfy the conditions of Theorem 2.52 and let <
be the relation of Definition 2.21. Suppose thatt € fs(G) and let K # L be
fuzzy cliques of G. We say K and L are consistently ordered by < at level
t provided K* <; L* if and only if K < L. We say the linear ordering <
is cut level consistent if for each pair of distinct fuzzy cliques of G and for
each t € fs(G) the pair is consistently ordered by < at level t.

Remark 3. If the linear ordering < is cut level consistent then each row
of the vertex clique incidence matrix is convex. That G is a fuzzy interval
graph follows immediately from Theorem 2.48. We proceed by contra-
positive, assuming there exists a row that is not convex. Suppose that
there exist a vertex £ € V and a sequence of fuzzy cliques KX < £ < M
such that £(z) < min{K(z), M(z)} =¢. Thenz € K*,z ¢ L' andz € M*.
As in Theorem 2.49 there exists y € £! such that (z,y) ¢ £ If < z,y >
€ A then Mt <, £t with £L < M. If < y,z > € A, then £t <; K' with
K < L. In either case the ordering < is not cut level consistent.

By Example 2.13 there exist fuzzy interval graphs where no ordering of
the fuzzy cliques is cut level consistent. Therefore, the general construction
is considerably more complicated. QOur goal is to formalize a process that
modifies or deletes “inconsistent” fuzzy cliques (matrix columns). We first
give a technical lemma which serves two purposes. First its proof illumi-
nates the “local”structure of noncut level consistent orderings. The lemma
is also used to show the construction in Definition 2.23 is well defined.

Lemma 2.53 Suppose that K and L are fuzzy cliques of G and that s > t.
IfK® <, L2 and Lt <; K* then there erists a clique M of G* such that
either

(1) K* C M and M <, K* or
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FIGURE 2.10 Basic conditions for inconsistent cut level orderings. (a)
represents G*,(b) represents (G*)¢, (c) represents G*, and (d) represents
(Gt)c.
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(2) L5C M and Lt <, M.

Proof. We proceed by exhaustion; checking all possible edge configura-
tions. Recall the edge set of the graph G* is denoted by £°. Each case
shares the general conditions shown in Fig. 2.10. By definition of <, there
exist x € K! and y € Lt with (z,y) ¢ £ and < z,y > € A. Similarly,
there exist 2’ € K* and y’ € £, with (z',y') ¢ £° and < 3,2’ > € A.
Then s > t implies (z,y) ¢ £°, (z,2') € £° (or z = z') and (y,y’) € &*
(or y = ¢'). As < is well defined, (z’,y’) € £* and either (z,z’) ¢ £° or
wy)¢e.

If (y',z) ¢ £ then (y',z) ¢ £° and transitivity requires < y',z > € A
and (z,z') ¢ €° (so z ¢ K°*). We claim for each z” € K® C K* that
(y',2") € & For (y',z") ¢ €' with £ <; K! implies < ¢/, 2" > € A.
However £ C £ and K* <s £° implies < z”,4’ > € A; a contradiction.
Therefore, {3’} UK® is a complete subgraph of G* and is contained in a
clique M of G*. Since z ¢ M and < y',z > € A, we have M <; K* and
property (1) is satisfied.

Similarly, if (y,z') ¢ £ we have that < y,2’ > € A and (y,z') ¢ £°.
Transitivity requires {z'} U L® to be a complete subgraph of G?, hence is
contained in a clique M of Gt. Then < y,z’ > € A implies £* <; M and
property (2) is satisfied.

If (y',z) € £ and (y,z') € £ we show that K U £* is a complete
subgraph of G*. We need only to show for each z/ € K*® and y” € L*
that (y”,z") € £*. Again (z”,y") ¢ £ and L' <, K* implies < y”, 2" >
€ A and (y”,2") ¢ £°. However, K! <; £° implies < z”,y"” > € 4; a
contradiction.

Therefore, K° U £° induces a complete subgraph of G? that is contained
in some clique M of G*. If M <, L! <, K!, property (1) is satisfied. If
Lt <, M property (2) is satisfied. These cases exhaust all possibilities. ll

We now construct a directed graph F and in turn a linearly ordered
family of fuzzy subsets that define columns of an incidence matrix. These
fuzzy subsets will either be fuzzy cliques of G or modifications of fuzzy
cliques. The graph theory analogy of a forest with trees allows a good
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visualization of “vertically growing” cut level sets which define the required
fuzzy sets

We use the fuzzy clique ordering < to recursively construct a forest F
whose vertex set is the set of all cut level cliques of G and whose arcs connect
cut levels of fuzzy sets. We recursively build the forest by “vertically”
adding cut level cliques as vertices of F' and defining a set of arcs between
cut levels. In the recursion let ¢ range from 1 to n — 1.

Definition 2.23 Let G = (V, p) with fs(G) = {r1,r2,....7n} be a chordal
fuzzy graph and let G¢ be transitively oriented by A.

Level 7, : Linearly order the set of all cliqgues of G™ by the relation <, of
Definition 2.22. Each of these cliqgues of G™ (vertices of F ) represent
the oot of a tree in the forest.

Level t,_; : Let s =Tp_; and t = r,_;41. Linearly order the set of all
cliques of G® by the relation <; . Let X° be any set of arcs that
satisfy:

(1) each cliqgue K* of G is a vertex of exactly one arc of X*

(2) if <K', K® > € X® then K, is a cligue of G, K* is a clique of
G®, and K® C K. Thus, an arc joins two level sets of (some)
fuzzy clique.

(3) For each pair of arcs < K*,K®* > € X* and < L', L° > € X*
we have K* <, L2 if and only if Kt <; Lt or Kt = L.

Thus when viewed as cut levels of a family of fuzzy cliques, the s level
ordering is level consistent with the next “lower” level.

We use Lemma 2.53 to demonstrate the existence of at least one such
forest, and show in Remark 4 that there may be a number of arc sets that
satisfy these conditions. Let K* be the minimal (with respect to <;) clique
of G*. Clearly there exists a minimal (with respect to <;) clique K* of G*
where K® C Kt. Let < K, K® > € X°.

Next, let £° be the successor of X* (with respect to <,) and let £* be
minimal (with respect to <;) such that £° C £* and K* <; £L? or K' = Lt.
If £* does not exist, let L be maximal (with respect to <;) with £* C L.
Now K¢ <, £° and L <; K* are the conditions of Lemma 2.53. However,
property (1) contradicts the minimality of K* and property (2) contradicts
the maximality of L. Therefore, £ exists and < £}, £° > € X° is well
defined.

Continuing recursively we construct one arc for each clique of G*. It
may be that for some clique M, of G?, there is no arc from M;. We shall
call such a clique a dead branch of F.

Combining the arc sets F™»— for ¢ € {1, ...,7—1} defines a forest with arc
set U;:ll Fre-i_ As in Definition 2.22, we lexicographically order the set
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of paths from a root to a dead branch or a r; level clique. For notational
convenience we denote the ¢ level vertex of path P; by Pj;. To ensure convex
rows in our (still undefined) incidence matrix, we add nonempty vertices
“above” dead branches if “adjacent” cliques have nonempty intersection.

More formally let the path P; end with a dead branch at the t level. For
each s € fs(G) with s > t we continue the path P; through the new vertex
Pj,, where x € Pj, if and only if there exist i < j < k with € P;; N Py,.
We call this final forest F. Now each path in F has length n, and it is
possible for a vertex Pj, to be the empty set.

We complete the construction by letting paths in F define a linearly
ordered family of fuzzy sets, say I. The fuzzy sets define columns of the
vertez forest matriz of (G, <); G is the interval graph of the family of rows.

Definition 2.24 Let G satisfy the conditions of Theorem 2.52, F be a

forest for G as defined in Definition 2.23, and P; be a path in F of length

n. Associated with P; define the fuzzy set p; € I on the vertex set of G by
pi(z) = V{s € fs(G) | z is an element of the s level vertez of P;}.

We construct the vertex forest matriz of (G, <) indexing rows by the
vertex set of G, columns by the (ordered) fuzzy sets of I and defining the
x, p; entry as p;(z). By construction each p; is either a fuzzy clique of G,
or has a cut level set that is the intersection of two cut level cliques.

Let F denote the family of fuzzy sets defined by the rows of the vertex
forest matrix. We now complete the proof of Theorem 2.52 by showing
that each member of F is normal and convex (a fuzzy interval) and that
G=Int F.

Lemma 2.54 We assume the conditions and notation above. For each
vertez = of G define J; is a fuzzy interval.

Proof. Let r be a vertex of G. Then z is a vertex in some clique of G™,
say K. By Definitions 2.23 and 2.24 K is the r; = 1 level cut of some fuzzy
set p in I. Therefore, 7:(p) = p(z) = 1 and J, is normal.

Each 7. is convex if i < j < k implies Jz(p;) AT=(px) < J=(p;), or equiv-
alently, if p;(z) A p(x) < p;(z). However, Definition 2.23 clearly provides
these conditions. If p;, p; and p; are all fuzzy cliques, the result follows
immediately from Remark 3. Otherwise, the result follows by definition of
the fuzzy sets p;, p; and p,. B

We conclude the proof of Theorem 2.52.

Lemma 2.55 Given the definitions and conditions of Theorem 2.52 through
Lemma 2.54, G = InY(F).
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Proof. There is a clear correspondence between the crisp vertex set V' and
the family of fuzzy intervals . Let z # y be elements of V. We must
show that p(z,y) = h(J: N Jy). By definition, A(J= N Jy) = V{Tz(p;) A
Ty(p;) | pj € I} = V{p;(z) A p;(y) | p; € I} = V{s € £5(G) | {z,y} C p3}-

As p(z,y) = t is the maximal value where (z,y) is an edge of G, p(z,y)
is the maximal value where (z,y) is in a clique of G*. By definition each
clique of G* is the t level set of some fuzzy set p; € I. Therefore, p(z,y) =
h(Jz N Jy) as required. W

We now give a complete example of Theorem 2.52.

Example 2.15 Consider the fuzzy graph G defined by the incidence matriz
G below, where fs(G) = {s,t,u} = {1,0.8,0.5}. Fig. 2.11 also shows the
cut level graphs of G and a transitive orientation A of G°.

a b ¢ d e

a |0 08 08 05 08
b 108 0 1 0 05
G=c¢c |08 1 0 1 08
d (05 0 1 1 08
e |08 05 08 08 0
Ki K2 Kz Ky Ks K¢ K7 Ksg
a |1 081 08 1 08 05 05
b /081 05050 0 0 O
M=c¢ |08 1 08 08 08 08 1 08
d |0 0 O O O 051 08
e |05 05 08 1 08 1 08 1

Using Definition 2.22 we linearly order the cut level cliques by:

s=1, {a} <s{b.c} <s{c,d} <; {e},

t=038, {a,bc} <;{a,ce}<;{cd, e},

u=0.5, {a,bce} <y {a,cd,e},

By Remark 2, there are eight fuzzy cliques of G; subscripts indicate
the order induced by Definition 2.22. The matrix M is the vertex clique
incidence matrix for G. The only convex row is indexed by d; thus the
fuzzy clique ordering is not cut level consistent.

Following Definition 2.23 gives the forest F of Fig. 2.12. The paths
P, , P, , P, and Ps correspond, respectively, to the fuzzy cliques K1, Ko, K7
and Kg. The clique {a,c,e} is a dead branch; so P, = Pos N Py = {c}.
The path P; is a modification of K4, the fuzzy cliques K3, K5, and K¢ are
deleted.
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FIGURE 2.11 A chordal fuzzy graph with transitive orientation of G¢. (a)
represents G*,(b) represents (G*)¢, (c) represents G*, (d) represents (G*)¢
(e) represents G, and (f) represents (G*)°.

b b
ar a
c ::> ¢
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2.3 Fuzzy Interval Graphs

Pr P2 P3 Py Ps
1 08 08 05 05
08 1 05 0 O
08 1 1 1 08
0 0 0 1 08
05 05 08 08 1

<
I
o Aaue o

FIGURE 2.12 A fuzzy interval representation for example 2.15.

{a) {b,c) {c} {c.d) {e}
N N S
{a,b,c} {a,c.e} {c,d,e}
~. |
{a,b,c.e} {a,c,d,e}
(a) (b)

P P2 P3 P4 Ps Pe
1 08 08 08 05 05
08 1 050 0 O
081 1 1 1 08
0 0 0 051 08
05 05 08 08 08 1

<
I
o a0 o

FIGURE 2.13 Alternate fuzzy interval representation for example 2.15.

{a) e {c ) {ca) (e}
N7 N/
{a,b,c} {a,c.e} {a,c.e} {c.de}

~ 7 7

{ab,c.e} {a,c.d,e}
(a) (b)
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Remark 4. The interval representation of a fuzzy graph G is not in gen-
eral unique. The construction depends heavily on the orientation of G¢;
different orientations can produce different vertex interval matrices.

Slight modifications of Definition 2.23 can produce different vertex in-
tervals matrices. We favored a “left to right” construction of arcs while
building the forest F'; a “right to left” construction works as well. We also
specified each cut level clique be the terminal vertex of only one arc. We
could relax this condition as long as cut level consistency is maintained.
Figure 2.13 gives an alternative interval representation for the fuzzy graph
of Example 2.15.

2.4 Operations on Fuzzy Graphs

The results of this section are taken from [31]. By a partial fuzzy subgraph
of a graph (V, X), where X is a set of edges, we mean a partial fuzzy sub-
graph of the fuzzy graph (xv,xx)- If G = (V,X) is a graph, a partial
fuzzy subgraph of G is an ordered pair (u, p) such that p is a fuzzy sub-
set of V and p is a symmetric fuzzy relation on V. However, without any
loss of generality, we could have defined p as a fuzzy subset of X. Thus it
is possible to interpret (1, p) as a partial fuzzy subgraph of G. We follow
this interpretation for the remainder of this section for the sake of clar-
ity in presentation. Let (u;, p;) be a partial fuzzy subgraph of the graph
G; = (Vi, X;) for i = 1,2. We define the operations of Cartesian product,
composition, union, and join on (y,p;) and (g, p,). Throughout this sec-
tion we shall denote the edge between two vertices u and v by uv rather
than (u,v) because when we take the Cartesian product, a vertex of the
graph is, in fact, an ordered pair. If the graph G is formed from G; and
G2 by one of these operations, we determine necessary and sufficient con-
ditions in this section for an arbitrary partial fuzzy subgraph of G to also
be formed by the same operation from partial fuzzy subgraphs of G; and
Gs.

Cartesian Product and Composition

Consider the Cartesian product G = G; x G2 = (V, X) of graphs G; =
(V1,X1) and G2 = (V,, X3), [20]. Then

V=VxVWV

and

X = {(w,u2)(n,v2) | v € Vi,u9vp € X2} U {(u,w)(v1,w) | w €
Vo,uivp € Xl}

Let u; be a fuzzy subset of V; and p; a fuzzy subset of X;,i = 1,2. Define
the fuzzy subsets p; x py, of V and p,p, of X as follows:

V(u1,u2) € V, (1 X pg)(u1, u2) = py(u1) A pp(u2);
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Yu € V1, Yugug € Xo, p1po((u, u2)(u, v2)) = () A pa(uavs),
Yw € V,Yuyvr € X1, pypp((ur, w)(v1, w)) = po(w) A py(wrnr1).

Proposition 2.56 Let G be the Cartesian product of graphs G and G.
Let (p;,p;) be a partial fuzzy subgraph of G;,i = 1,2. Then (py X pg, p1p3)
is a partial fuzzy subgraph of G.

Proof. p;py((u, u2)(u,v2)) = py(u) A pp(uzvz) < py(u) A(pa(uz) A pa(vz))
= (11 (1) Ang(u2)) A(py(u) A pa(u2)) = (1 X po)(u, u2) A(py X po)(u, v2).
Similarly, pypp((u1, w)(vi,w)) < (kg X pa)(u1, w) A (g X po)(v1,w). B

The fuzzy graph (g, X o, p; p2) of Proposition 2.56 is called the Cartesian
product of (1, p;) and (2, p3)-

Theorem 2.57 Suppose that G is the Cartesian product of two graphs G,
and Ga. Let (u, p) be a partial fuzzy subgraph of G. Then (u, p) is a Carte-
sian product of a partial fuzzy subgraph of G and a partial fuzzy subgraph of
G2 if and only if the following three equations have solutions for x;,y;, zjk,
and w;p where Vi = {vi1,v12,...,v1n} and Vo = {vo1,v22,...,V2m} :

(1) xi/\yj =/”‘(Uli=v2j)'i= 1**"‘).7=13ma

(2) z; A zjk = p((v1i,v2;)(v1i, v2r)), % = 1,...,m;5,k such that vojvar €
Xo;

(3) yj Nwin = p((v1i,v25)(V1n,v25)), 7 = 1,...,m;%, h such that vi;v1p €
X:.

Proof. Suppose that a solution exists. Consider an arbitrary, but fixed,
Jj. k in equations (2) and 7, h in equations (3). Let

Zik = V{p((v1i,v25)(v1i, v2k)) | i = 1,...,n}

and
Win = V{p((v1i,v25)(v1n,v25)) | 5 =1,...,m}.
Set
J ={(4,k) | 7, k are such that vgjvor € Xo}
and

I = {(i,h) | i, h are such that vy,v1, € X, }.
Now if {z1,...,za} U{2zjx | (G, k) € J} U{w1,...,ym} U{win | (i,h) € I}
is any solution to (1), (2), and (3), then {zi1,...,z.} U{2jx | (4, k) €
JYU{y1, ., ym} U {in | (i,h) € I} is also a solution and, in fact, Zjx is
the smallest possible z;; and w;p, is the smallest possible w;. Fix such a
solution and define the fuzzy subsets p,, us, p,. and p, of V4,V5, X, and
Xa, respectively, as follows:

p(vy) =zifori=1,...,n;
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/12('1)2]') =Y for j =1,...,m

po(v2v2k) = Zjk for j, k such that vojvor € Xo;

py(v1iv1n) = W, for 4, h such that vy;v1, € X;.

For any fixed j.k, p((vii,ve;)(vii,v2x)) < p(vii,v25) A p(vis, vak)
= (1 (V1) Mg (v25))A (1 (v13) Apig(vak)) < (pp(ve;)Apa(vak)),i =1,...,m.
Thus Zjx = V{p((v1i,v2;)(v1i,v2k)) | ¢ = 1,...,n} < po(ve;) A po(vak)-
Hence py(vojvar) < po(v2;) A po(vak). Thus (g, pp) is a partial fuzzy sub-
graph of G. Similarly, (u,,p,) is a partial fuzzy subgraph of G;. Clearly,
B = py X pg and p = pypy.

Conversely, suppose that (u, p) is the Cartesian product of partial fuzzy
subgraphs of G; and G». Then solutions to equations (1),(2) and (3) exist
by definition of Cartesian product. Il

Remark 5. Consider an arbitrary fixed solution to equations (1), (2),
and (3) as determined in the proof of Theorem 2.57 (assuming one exists).

(1) Let (] k) € Jandlet I' = {ijk el I ijk = p((vh-jk,vgj)(vujk,vgk))}
in Theorem 2.57. If ;,, > 2;i for some i;; € I’, then z;) is unique
for these particular x,,...,2, and equals Zjx; if z;;, = ZxVij € I',
then 2;; < zj, <1 for these particular z,,...,z,.

(2) Let (irh) €I and let J' = {j‘ih € J | Wi = p((vl‘i)v2j-l.)(vlhrv2ji).))}
in Theorem 2.57. If y;,, > W;n for some j;» € J', then w;y is unique
for these particular y1,...,ym and equals wi; if yj,, = WinVjin € J',
then w;, < w;n <1 for these particular y;,...,Ym-

Example 2.16 Let V; = {'U]l,'UlQ},VQ = {’Uzl,’vgz},xl = {’011’012}, and
X2 = {va1v22}. Let p((vi1,v21)) = 1/4, p((v11,v22)) = 1/2, p((vi2,v21)) =
1/8, and p((vi12,v22)) = 5/8. Then (p,p) is not a Cartesian product of
partial fuzzy subgraphs of G, and Gy for any choice of p since equations
(1) of Theorem 2.57 are inconsistent:

Ay = 1/4,1‘1 Ny = 1/2,.’1:2 ANy = 1/8,172 Ny2 =5/8
s impossible.

Examples are easily constructed where equations (1) have a solution, but
either equations (2) or (3) are inconsistent.

We now consider the composition of two fuzzy graphs. Let G, {G2] denote
the composition of graph G; = (V;,X1) with graph G2 = (V2, X2), [20].
Then G, [Gz] = (Vl X V2,X0) where X0 = {(u, us)(u, v9) I u € Vi,uqvg €
Xo} U {(u1,w)(v1,w) | w € Vo,wavn € Xa} U {(u1,u2)(v1,22) | wann €
Xi,u2 # vo}. Let p; be a fuzzy subset of V; and p; a fuzzy subset of
X;.i = 1,2. Define the fuzzy subsets p, o 1 and p; o p, of V; x V3 and X©,
respectively, as follows:
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V(ulau2) € ‘/1 X I/Zy

(11 © po)(u1,u2) = py(wr) A po(u2);
Vu € V1, Vuquy € X,

(p1 0 p2)((x, u2)(u, v2)) = 1 (u) A pa(ugu2);

Yw € Vo, Vuv; € X1,

(P1 © p2) (w1, w)(v1,w)) = po(w) A py(urv1);
V(uy,u2)(vy,v2) € X0\ X,

(1 0 p2)((u1, u2)(v1,v2)) = po(u2) A py(v2) A py(u11),

where

X = {(u,u2)(w,v2) | v € V,upvp € Xo} U {(uy,w)(vy,w) | w €
Vo, uv; € X]}.
We see that p; o py = p1, X po and that p; o py = p;p, on X.

Proposition 2.58 Let G be the composition G, [G2] of graph G, with
graph Ga. Let (p;,p;) be a partial fuzzy subgreph of Gi,i = 1,2. Then
(k1 © pg, py © pa) is a partial fuzzy subgraph of G1 [Ga).

Proof. We have already seen in the proof of Proposition 2.56 that

(py 0 p2)((u1,u2)(v1,v2)) < (1 © p2) (w1, u2)) A (1 © o) ((v1,02))

for all (u;,up)(v1,v2) € X. Suppose that (u;,u2)(v1,v2) € X°\ X and so
wvy € Xi1,u2 # vo. Then (p; 0 po)((u1, u2)(v1,v2)) = po(uz) A po(v2) A
p1(urv1) < pp(uz) Apg(v2) Ay (ua) Apty (V1) = (i (u1) Aprg(u2)) A(py (v1) A
1a(v2)) = (1 © ) ((u1, u2)) A (11 © o) ((v1,v2)). M

The fuzzy graph (u, o ps, p; © pp) of Proposition 2.58 is called the com-
position of (uy, py) with (5, py).

Theorem 2.59 Suppose that G is the composition G [Ga] of two graphs
Giand Ga. Let (, p) be a partial fuzzy subgraph of G. Consider the following
equations:
(1) zi Ayj = pl(vri,ve;),i=1,...,m5=1,...,m;
(2} x; N\ 2k = p((vu,vgj)(vh-, ’ng)),i = 1, .. ,n;j,k such that V2;V2k (S
X2;

(3) Y; Nwip = p((vli,v2j)(v1h,v2j)),j =1,...,m;i,h such that vi;v14 €
X1;
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(4) y;i Ayk Awin = p((V1i, v25) (Vin, var)), where (v1i,v2;)(Vin, vax) € XO\

b

where X is defined as above.
A necessary condition for (i, p) to be a composition of partial fuzzy sub-
graphs of G, and G3 is that a solution to equations (1)-(4) exists.
Suppose that a solution to equations (1)-(4) exists. If

Win > p((v1i, v25)(Vin, vax))V(i, h) € T

such that (v1;, v2;)(vin, v2;) € XO\ X, then (i, p) is a composition of partial
fuzzy subgraphs of G, and G».

Proof. The necessary part of the theorem is clear. Suppose that a solution
to equations (1)-(4) exists. Then there exists a solution to equations (1)-
(4) as determined by in the proof of Theorem 2.57 for equations (1)—(3)
because every w;, > W;in and by the hypothesis concerning the w;;. Thus
if p;,p;,%1 = 1,2,are defined as in the proof of Theorem 2.57, we have that
(k4. p;) is a partial fuzzy subgraph of G;, ¢ = 1,2, and g = g, o p, and
p=prop- W

Example 2.17 Let G; = (Vi,X1) and G2 = (Vo, X3) be graphs and let
Iy, Bo, P1, and p, be fuzzy subsets of Vi, Vo, X1, and, Xa, respectively. Then
(11 X pg, p1py) is a partial fuzzy subgraph of G1 x Gz, but (u;,p;) is not a
partial fuzzy subgraph of G;,i =1,2: Let Vi = {ug,v1}, Vo = {ug,v2}, X1 =
{urv1}, and V3 = {ugva}. Define the fuzzy subsets py, u,, py, and p, as fol-
lows: p1y(u1) = py (v1) = pip(uz) = ug(v2) = 1/2 and py (uyvr) = po(gp) =
3/4. Then (u;,p;) is not a partial fuzzy subgraph of Gi,i = 1,2. Now
for z € Vi and y € V,p1p5((x, u2)(z,v2)) = p1(2) A poluve) = 1/2 =
11 (=) A pp(uz) A ig(v2) = (11 X 122) (@ u2)) A (1 X 12) (&, v2)) andl sim-
ilarly, pypy((u1,9)(¥1,9)) = (i X b2 ((w1,9) A (g X ia)((v1,)). Thus
(k1 X pg, p1p2) is @ partial fuzzy subgraph of G1 x Ga. Note that for z,y, €
X1 and 23,y € V3, (py 0 ) (%1, 22)(y1,y2)) = pa(T2) A pa(y2) A pr(2191)
=1/2 = (py X po)((z1,%2)) A (11 X p2)((¥1,92))- Thus (pg © pg, py 0 py) s
a partial fuzzy subgraph of Gy [G2).

We note that in Example 2.17, (1, X po, pypo) satisfies the conditions
in Theorem 2.57. Hence (p, X g, p1po) is the Cartesian product of partial
fuzzy subgraphs (v;,7;) of Gi,i = 1,2. In fact, these v; and 7; (i = 1,2)
are constant membership functions with membership value 1/2.

Union and Join

Consider the union G = G, U G2 of two graphs G; = (V},X;) and G, =
(V2, X2), [20]. Then G = (V1 U V3, X1 U X3). Let u,; be a fuzzy subset of V;
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and p; a fuzzy subset of X;,i = 1,2. Define the fuzzy subsets p; U py of
V1 U V2 and p, U py of X; UX35 as follows:

(1 Upa)(u) = py(u) if uw € Vi \ Vo, (g U o) () = pp(u) if u € V2 \ W,
and (p; U po)(u) = py(u) V pp(u) ifu € ViNVy;

(p1 U pg)(uwv) = py(uv) if wv € X1 \ Xz, (p1 U po)(wv) = pp(wv) if uv €
X2\ X1, and (p; U po)(uv) = py(uv) V pp(uv) if uv € X; N Xy,

Proposition 2.60 Let G be the union of the graphs Gy and Ga. Let (p;, p;)
be a partial fuzzy subgraph of G;,i = 1,2. Then (u,Ups, pyUp,) is a partial
fuzzy subgraph of G.

Proof. Suppose that uv € X; \ X. We have three different cases to con-
sider: (1) w,v € V1 \ V2, (2) ue Vi \ Vo,v € ViNVz and (3) v,v € V1 NVs.

(1) Let u,v € V1 \ Va. Then (p, U p)(uv) = py(uv) < py(u) Apy(v) =
(11U o) () A (pg U ) (v).

(2) Let u € Vi \ V2 and v € V; NV,. Then (p; U pp)(uv) < (g U po)(u) A
(1(v) V 12(v)) = (11 U ) (1) A (111 U p22) (v).

(3) Let u,v € Vi N Va. Then

gf(’l)U p2)(uv) < (g () V po () A (11(v) V 12(v)) = (11 U p2) () A (1 U
o) (V).

2Similatrly, ifuv € X2\ X3, then (p; Upy)(uv) < (13 Upa)(u) A (e Upg)(v).
Suppose that uv € X; N X2. Then (p; U po)(uv) = p;(uv) V py(uv) <
(1 (w) A py(0)) V (po(w) A po(v) < (1 (w) V pa(u) A (1 (V) V po(v)) =
(1 U pg) () A (g U ) (v). B

The fuzzy subgraph (z, U gy, py U py) of Proposition 2.60 is called the
union of (y,p,) and (ug, p).-

Theorem 2.61 If G is a union of two fuzzy subgraphs G, and Ga, then
every partial fuzzy subgraph (i, p) is a union of a partial fuzzy subgraph of
G, and a partial fuzzy subgraph of Gs.

Proof. Define the fuzzy subsets p,, 1y, p;, and p, of V}, V2, X, and Xo,
respectively, as follows: p;(u) = p(u) if v € V; and p;(uv) = p(uv) if
wv € X;,1 =1,2. Then p;(uivi) = p(uivi) < plu) A p(vi) = py(us) A py(vi)
if u;v; € X;,1 =1, 2. Thus (u,, p;) is a partial fuzzy subgraph of G;,i =1, 2.
Clearly, p = p; Upg and p=p, Up,. B

Consider the join G = Gy + G2 = (V] U V,, X, U X3 U X') of graphs
G, = (W1, X1) and G2 = (V;, X) where X' is the set of all edges joining
the vertices of V) and V; and where we assume V; NV, = 0, [20]. Let u; be
a fuzzy subset of V; and p; a fuzzy subset of X;,7 = 1,2. Define the fuzzy
subsets p; + po of V1 U V; and p, + py of X1 U X2 U X' as follows:
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(pq + p2)(u) = (11 U pp)(w)Vu € V1 U Va;
(p1 + p2)(wv) = (py U po)(wv) if wv € X1 U X2 and (p; + po)(uv) =
py(w) A pa(v) if uv € X'

Proposition 2.62 Let G be the join of two graphs G1 and Ga. Let (;, p;)
be a partial fuzzy subgraph of G;,i =1,2. Then (u, +pqy, py +p2) s a partial
fuzzy subgraph of G.

Proof. Suppose that uv € X; U X3. Then the desired result follows from
Proposition 2.60. Suppose that uv € X’'. Then (p; + p,)(uv) = u,(u) A
pa(v) = (11 U p2) () A (g U i) () = (g + p12) () A (111 + p2)(v)).- B

The fuzzy subgraph (p, + po, P+ po) of Proposition 2.62 is called the
join of (py,p1) and (g9, p2)-

Definition 2.25 Let (u,p) be a partial fuzzy subgraph of a graph G
(V, X). Then (u, p) is called a strong partial fuzzy subgraph of G if p(uv)
w(u) A p(v) for all wv € X.

(Il

Theorem 2.63 If G is the join of two subgraphs G1 and G2, then every
strong partial fuzzy subgraph (i, p) of G is a join of a strong partial fuzzy
subgraph of G1 and a strong partial fuzzy subgraph of Ga.

Proof. Define the fuzzy subsets pq, pig, oy, and py of V4, V5, X5, and X,
as follows: p;(u) = p(u) if v € V; and p;(uv) = p(uv) if wv € X;,i =1,2.
Then (y;, p;) is a fuzzy partial subgraph of G;,i = 1,2, and p = pu, + y, as
in the proof of Theorem 2.61. If uv € X; U X, then p(uv) = (p; + po)(uv)
as in the proof of Theorem 2.61. Suppose that uv € X’ where v € V; and
v € V3. Then (p; + pp)(uv) = py(u) A po(v) = p(u) A p(v) = p(uv) where
the latter equality hold since (g, p) is strong. B

Example 2.18 Let G, = (V1, X)) and G2 = (Va, X2) be graphs and let
11, Ho, P, and p, be fuzzy subsets of V1,Va, X,, and X, respectively. Then
(17 U g, p1 U pg) is a partial fuzzy subgraph of Gi U Ga, but (p;,p;) s
not a partial fuzzy subgraph of G;,i = 1,2: Let Vi = Vo = {u,v} and
X1 = Xp = {uv}. Define the fuzzy subsets iy, g, py» py of Vi, Va, X1, Xa,
respectively, as follows: p,(u) =1 = po(v), py(v) = 1/4 = pyo(u), py(uv) =
1/2 = py(uv). Then (u;,p;) is not a partial fuzzy subgraph of G;.i = 1,2.
Now (p; Upy)(uv) = py(uv) Vpp(uv) =1/2 < 1= (p(w)Vpap(u)) Apy (v) V
H2(v)) = (11 U pa)(w) A (1 U ) (). Thus (pq U pg, py U p) is a partial
fuzzy subgraph of G, U Ga.

The above example can be extended to the case where Vi€V, Vo@ W,
X1¢€ Xo, and Xo¢ X, as follows: Let Vi = {u,v,w}.Vo = {u,v,2}. X; =
{uv,uw}, Xo = {uv, vz}, and p,(w) = py(z) =1 = p; (vw) = py(uz).



2.4 Operations on Fuzzy Graphs 69

Theorem 2.64 Let Gy = (V4,X;) and G = (Va, X3) be graphs. Suppose
that Vi N'Va = 0. Let py, po, pq,po be fuzzy subsets of Vi,Vo, X1, Xo, re-
spectively. Then (u, U po, py U po) s a partial fuzzy subgraph of Gy U Gy if
and only if (uy,p1) and (uo, pg) are partial fuzzy subgraphs of G; and Ga,
respectively.

Proof. Suppose that (1, Ups, pyUp,) is a partial fuzzy subgraph of G;UG5.
Let uv € X;. Then uv ¢ X, and u,v € V; \ V,. Hence p,(uv) = (p, U
p2)(uv) < (g Upo)(u) A (g Upso)(v)) = (kg (w) Apty (v)). Thus (py,0,) is a
partial fuzzy subgraph of G,. Similarly, (i, p,) is a partial fuzzy subgraph
of G,. The converse is Proposition 2.60. B

The following result follows from the proof of Theorem 2.64 and Propo-
sition 2.62.

Theorem 2.65 Let Gy = (V},X;) and G = (Va, X2) be graphs. Suppose
that Vi N Vo = 0. Let py, py, py, po be fuzzy subsets of Vi, Vo, X1, Xa, re-
spectively. Then (u, + fo, p1 + p2) is a partial fuzzy subgraph of Gy + G2 if
and only if (p1,p1) and (pq, po) are partial fuzzy subgraphs of G1and Ga,
respectively. B

Definition 2.26 Let (u,p) be a partial fuzzy subgraph of (V,T). Define the
fuzzy subsets p’ of V and p’ of T as follows: p' = p andVuv € T, p'(uv) =0
if p(u,v) >0 and p'(uv) = p(u) A p(v) if p(u,v) = 0.

Clearly, G' = (¢/, ') is a fuzzy graph.

Definition 2.27 (u, p) is said to be complete if X = T and Vuv € X, p(uv)
= u(u) A ().

We use the notation Cy,(u, p) for a complete fuzzy graph where | V |= m.

Definition 2.28 (u, p) is called a fuzzy bigraph if and only if there exists
partial fuzzy subgraphs (u;, p;),i = 1,2, of (i, p) such that (i, p) is the join
(1, 1) + (2, p2) where Vi NV =0 and X; N Xo = 0. A fuzzy bigraph is
said to be complete if p(uv) > 0 for all uv € X'.

We use the notation Ci, ,(u, p) for a complete fuzzy bigraph such that
[Vi|=mand | V2 |=n.

Proposition 2.66 Cp, »(1,p) = Cm(pq,01)" + Cn(ps, po). M
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2.5 On Fuzzy Tree Definition

In this section, we consider other definitions of a fuzzy tree that can be
found in the literature. The results are taken from [10]. The first definition
of a fuzzy graph was introduced by Kaufmann [22], based on fuzzy relations
(see Section 1.1). A more elaborate definition is due to Rosenfeld [34]. In
this section, some concepts and properties, such as path, connectedness and
fuzzy tree, are presented.

We may interpret a fuzzy graph (u, p) as a network of roads such that

(1) its vertices are towns which can be classified in several ways, e.g.,
population size and a corresponding value assigned via y;

(2) its edges are the roads joining the towns and the roads can be of
different categories and a weight is associated to each category via p.

The above network road can be interpreted as a fuzzy graph. For a such
network road the most important problems arise in relation with the con-
nectedness among vertices.

As developed previously, the existence of a chain joining a pair of ver-
tices guarantees the connectedness between both vertices, regardless of the
category to which these vertices and edges belongs. From a practical point
of view, in a network road like the above one it is very important to an-
alyze the connectedness by levels in order to know whether vertices of a
given category are connected by chains formed without edges of a lower
category than the aforementioned vertices. If is clear the existence of im-
portant towns joined by roads of low category only, reveals defects in the
design of the network.

The same question arises when the concept of a fuzzy tree is considered.
It is important to remark that the situation above explained is the subject
of a work which has been analyzed by Delgado, Verdegay and Vila on the
network road of Andalusia (Spain). The objectives of this section are the
definition and study of some structural properties of finite fuzzy graphs
in order to find a tool that allows us to solve some Operational Research
problems, like the above mentioned. Therefore, on the basis of the initial
definitions, we will specify the concept of connectedness, by way of t-cuts.
The acyclicity problem in a fuzzy graph is also treated, giving the defini-
tions of a cyclomatic function and an acyclicity level. Finally, we will give
some definition for fuzzy trees and we will analyze their relations.

Recall that the t-cut, t € [0,1], of a fuzzy graph G = (V,pu,p) is the
classical graph G* = (V. U?) with

pt={z eV |u(z) >t}

pl={(z,y) €V x V| p(z,y) > t}.

We now examine connectedness for fuzzy graphs. From its underlying
structure, some definitions of connected fuzzy graphs can be established.
First, we recall our previous definition.
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FIGURE 2.14 Connected fuzzy graphs.
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Let G = (V, pu, p) be a fuzzy graph. Then vertices z and y are connected
if and only if there is a path with positive strength joining both, that is,
p>®(z,y) > 0. With the assumption of reflexivity, that is, every vertex is
connected with itself, “connectedness” is an equivalence relation.

We also recall that a fuzzy graph G is called connected if and only if it has
only one connected component, which is itself. This definition is equivalent
to saying that a fuzzy graph is connected if and only if there exists a path
with non-zero strength joining every pair of different vertices.

We now present some examples which will lead us to a different notion
of a connected fuzzy graph.

Example 2.19 We consider the two fuzzy graphs G and G’ in Figure 2.1/.
The two fuzzy graphs are connected, but they do not satisfy this property in
the same way. The smallest strength of a chain in G' is 0.8, however there
are chains which connect the vertices in G with strength 0.1 at most. Thus
G’ seems to be “more connected” than G.

Example 2.20 Consider the fuzzy graphs F and F' (Figure 2.15 ). Neither
F nor F' are connected, but the t-cuts of F are connected (in the classical
sense) for t € (0.2,0.8], whereas no t-cut of F' is connected. F presents
“some kind of connectedness” which does not appear obviously in F'.

These examples explain the following point of view:

(a) The property of connectedness on a fuzzy structure is a matter of
degree.

(b) There is a kind of connectedness in fuzzy graphs, characterized by
means of ¢-cuts, which can be used to treat some fuzzy graphs.

This leads us to the following definition.
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FIGURE 2.15 Nonconnected fuzzy graphs.
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Definition 2.29 Let G = (V, u, p) be a fuzzy graph. Then the connected-
ness level of G is the value C(G) = AM{p™®(z,y) | z,y € V,z # y}.

Obviously, G is connected if and only if C(G) > 0. Moreover, if C(G) > 0
then Vt € (0,1}, t < C(G) = G* is connected.

Definition 2.30 Let G = (V, pu, p) be a fuzzy graph. We say G is weakly
connected if there is some t-cut of G which is connected.

We see that a fuzzy graph is weakly connected if and only if 3¢ € [0, 1]
such that A{p™(z,y) | T,y € u'} > t.

Clearly, connectedness implies weak connectedness, but not conversely.

We see that weak connectedness is only meaningful if p(z) < 1 for some
z € V, as in this situation the set of vertices changes with the variations of
membership degree.

A fuzzy graph G = (V, 1, p) is called an acyclic fuzzy graph if there is a
fuzzy subgraph F' = (V, u,7) of G such that F is a forest and Vz,y € V,
p(z,y) > 0 and 7(z,y) > 0 implies 7°°(z,y) > p(z,y).

The concept of an acyclic graph plays a very important role in general
graph theory, as it is related with connectedness problems. Further, it is
closely related to the concept of a tree. For example, one may define a fuzzy
tree as an acyclic and connected fuzzy graph. The following example will
lead us to a new notion of an acyclic fuzzy graph.

Example 2.21 Consider the graphs G and F in Figure 2.16. G is a fuzzy
tree (F is the fuzzy subgraph which appears immediately above); however,
there is no t-cut of G, which is a tree in the classical sense.

The difficulty arises from the definition of an acyclic fuzzy graph and so
we present some alternative definitions of it. For that we must introduce
some concepts such as the cyclomatic function.
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FIGURE 2.16 Fuzzy tree with no t-cuts as trees.

Given a graph G, the cyclomatic number of G is defined as m — n + p,
where n, m, and p denote the number of vertices, edges and connected
components of G, respectively.

Definition 2.31 Let G = (V, u. p) be a fuzzy graph with card(V) =n. We
call K(G,") : [0,1] — NU{0} defined by h(G,t) = cyclomatic number of G*,
the cyclomatic function of G.

If G is a fuzzy graph and t € [0,1], we let n*,m?, and p* denote the
number of vertices, edges, and connected components of G, respectively.
Then h(G,t) = m* — n* +p*.

The following properties of ~(G, ) are important for further definitions
and developments.

Proposition 2.67 vt € [0,1], h(G,t) > 0.

Proposition 2.68 h(G,-) is a piecewise constant function with finite
Jumps.

These two properties follow directly from the definition of A(G, )

Let G = (V, 1, p) be a fuzzy graph. If we remove an edge from G to obtain
a fuzzy graph G’, then m’ = m — 1,n’ = n, and p’ < p + 1, where n’/, m/,
and p’ are the number of nodes, edges, and connected components of G’,
respectively. Hence h(G',-) = m'—n'+p' < (m—-1)—n+(p+1) = (G, ).
Now suppose a node v and edges connected to v are removed from G.
Suppose the number of such edges is k. If we remove the edges one at a
time, but not v, then the resulting graph has less than or equal to p + k
connected components. Finally, removing v, the resulting graph G’ has
less than or equal to p + k — 1 connected components. Hence h(G’,-) =
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m—-n'+p <(m-k)—(n-1)+ (p+k—1) = h(G,). This reasoning
leads to the following result.

Proposition 2.69 h(G,-) is non-increasing in t, that is,

vt.t €[0,1] t >t = h(G,t) < h(G,t).
Proof. By properties of t-cuts

mt < nt=>mt=mt —k,

ki€Z,k; 20,

nt <nt' = nt =n! —ky,

ko€ Z,ky > 0.

We cannot conclude anything about the variation of p* with ¢, because the
number of connected components of G* may increase, decrease or remain
the same as t ranges in [0, 1]. Thus, for t > ¢/, p* = pt' — k3 for some k3 € Z.

In this situation

R(G,t) = (mt —k;) — (n¥ — ko) + (p*' — k3)

= h(G, t’) + (ko — k1 — k3)
= h(G,t') + k.

We will prove k > 0 is impossible. Two possibilities must be considered:

(a) k2 = 0. This assumption implies the vertex set does not change from
G* to Gt. Thus k3 < 0, because connected components cannot decrease by
a possible edge suppression. Moreover, since a new connected component
appears only by edge suppression

—k3 <k =k<0.

(b) k2 > 0. If we denote h the number of eliminated connected com-
ponents of G, obviously k3 < h and ky > h. Let us write h = ko — s;
s € {0,...,k2}. From the definition of s, we can derive k; > s and thus

k=ky—ks—ki <ky—ko+s—-k;=>k<s—k <01

Let H = {t € [0,1] | h(G.t) = 0}. By Propositions 2.68 and 2.69 we can
assure only two possibilities for H :

1) H=0.

(2) H=1(0,1].
Definition 2.32 The acyclic level of an fuzzy graph G is

S(G)=n{t|te H};
S(G) =00 if H=0.

The following result can be easily proved from this definition and the
properties of the cyclomatic function.

Proposition 2.70 There are no cycles in G* if and only if S(G) < oo and
t > S(G).
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Two definitions of acyclic fuzzy graphs can be formulated by means of
S(G).

Definition 2.33 The fuzzy graph G = (V, u,p) is said to be fully acyclic
if S(G) =0.

Actually, a fully acyclic fuzzy graph is a forest and conversely, since
S(G) = 0, it is equivalent to say the graph formed by the edges with
nonzero membership degree must be acyclic. However, we introduce this
nomenclature to emphasize the acyclic situation underlying in a such fuzzy

graph.

Definition 2.34 We shall say an fuzzy graph G = (V, p, p) is acyclic by
t-cuts if there ezists a t € [0,1] such that G* has no cycles.

Obviously, G will be acyclic by t-cuts if and only if S(G) # oo.

Proposition 2.71 Every acyclic fuzzy graph is acyclic by t-cuts.

Proof. Let us assume that G is an acyclic fuzzy graph such that S(G) = oo.
This implies there is a cycle L in G such that p(z,y) = 1 for every edge
(z,y) belonging to L. Let (Z,7) be an edge of L. Let {(-,-) denote the
membership function of the fuzzy set of edges in the fuzzy subgraph of G
which appears when (Z, i) is suppressed. Then

¢*(%,9) = 1=(>(%,9) = p(Z, 7).

Hence, by Theorem 2.5, G cannot be an acyclic fuzzy graph and thus we
conclude that S(G) # oco. B

To see the converse of Proposition 2.71 does not hold, we can consider
the example shown in Figure 2.17. Obviously, G3/4 is an acyclic graph, but
the definition of an acyclic fuzzy graph never holds for the edges (a,d) and
(b, c).

We now consider several definitions of a fuzzy tree. By using the con-
cepts of connectedness and acyclicity, some fuzzy tree definitions can be
introduced.

Definition 2.35 The fuzzy graph G = (V, p,p) is called a full fuzzy tree
if it satisfies the conditions C(G) > 0 and S(G) = 0.

Obviously, this is the tree definition for fuzzy graphs. We introduce the
adjective “full” to emphasize that Definition 2.33 is used.

Definition 2.36 The fuzzy graph G = (V, i, p) is a complete fuzzy tree if
there exists t € [0,1] such that G* is a tree and p*t = V.
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FIGURE 2.17 Acyclic by t-cuts fuzzy graph.
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Another characterization of a complete fuzzy tree can be established by
means of the following lemma.

Lemma 2.72 G = (V, p, p) is a complete fuzzy tree if and only if it satisfies
the conditions C(G) > 0 and S(G) < C(G).

Proof. Let G* be the tree which appears in Definition 2.36. It is a connected
acyclic graph so that C(G) >t and S(G) < t. Therefore S(G) < t < C(G).

Let us assume the above conditions hold for G. For every t € (S(G), C(G)],
Glisa tree Therefore to prove it is a complete fuzzy tree, it suffices to
prove p* = V, that is, u(x) > £, Vz € V. Let £ € V. By the definition
of C(G), we have Yy € V, z # y = p™(z,y) > C(G). Since p>=(z,y) is
the strength of the strongest chain joining = and y, we can assure that
3z € V such that p(z,2) > p*(z,y). Moreover p(z,2) < p(z) A p(z) and
thus p(z) > p(z,2) > p=(z,y) > C(G) >t M

The following property arises from this characterization.

Proposition 2.73 IfG is a complete fuzzy tree, thenVt, t' € (S(G),C(G)],
Gt =G,

Proof. By Lemma 2.72, ut = ut = V, therefore n = nt' = card(V).
Moreover, G* and G*' are trees and so card(p*) = card(p) = card(V) — 1,
i.e., both trees have the same number of edges Now if t < ¢/, then ut D ,u"
a.ndp D p*. Hence ut = pt and p* = p*’. Thus Gt = feN |

Definition 2.37 G = (V, u, p) is called weak fuzzy tree if there ist’ € (0, 1]
such that Gt is a tree.

Another characterization of weak fuzzy tree is: G is a weak fuzzy tree if
and only if the following conditions hold:
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FIGURE 2.18 A complete, but not full fuzzy tree.
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(1) G is weakly connected,
(2) S(G) < t, t being some level such that G? is connected.

The proof of this characterization is like one of Lemma 2.72, by using £
instead of C(G).

Obviously, all these definitions are related, as is shown in the following
result.

Proposition 2.74 The following implications hold.
(1) If G is a full fuzzy tree, then G is a complete fuzzy tree.

(2) If G is a complete fuzzy tree, then G is a fuzzy tree and in fact, G is
a weak fuzzy tree.

Proof. (1) This statement follows from Definition 2.35 and Lemma 2.72.

(2) Let G be a complete fuzzy tree. From Lemma 2.72, C(G) > 0 and
S(G) < C(G). For every t € (S(G), C(G)] we can define the fuzzy subgraph
of G, F = (V,u,v) where
[t if(z,y)€p,

v(z,y) = 0 otherwise.

Since G? is a tree, obviously F is a full fuzzy tree. Moreover, v*°(z,y) =t
if x # y. Thus F is acyclic and G is connected. Therefore G is a fuzzy tree.
That G is a complete fuzzy tree implies that G is a weak fuzzy tree follows
from Lemma 2.72 and Definition 2.37 with { = C(G). B

It may be noted that weak connectedness does not imply connectedness.
The converse of (1) does not hold as it is shown in counter example, illus-
trated in Figure 2.18: S(G) = 0.5, C(G) = 0.6 and V%6 =V, that is, G is
a complete fuzzy tree, but it is not a full fuzzy tree. Example 2.21 shows
that a fuzzy tree need not be complete.
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3

APPLICATIONS OF FUZZY
GRAPHS

Let (V, y, p) be a fuzzy graph. We now provide two popular ways of defining
the distance between a pair of vertices. One way is to define the “distance”
dis(z,y) between z and y as the length of the shortest strongest path
between them. This “distance” is symmetric and is such that dis(z,z) =0
since by our definition of a fuzzy graph, no path from z to z can have
strength greater than u(xz), which is the strength of the path of length
0. However, it does not satisfy the triangle property, as we see from the
following example. Let V = {u,v,z,y, 2}, p(z,u) = p(u,v) = p(v,2) =1
and p(z,y) = p(y,2) = 0.5. Here any path from z to y or from y to z has
strength < 1/2 since it must involve either edge (z,y) or edge (v, z). Thus
the shortest strongest paths between them have length 1. On the other
hand, there is a path from z to z, through u and v, that has length 3 and
strength 1. Thus dis(z,2) =3 > 1+ 1 = dis(z,y) + dis(y, z) in this case.

A better notion of distance in a fuzzy graph can be defined as follows:
For any path P = zy,...,z,, define the p-length of P as the sum of the
reciprocals of P’s edge weights, that is,

I(P) Z pEm l,z,)

=1

If n = 0, we define [(P) = 0. Clearly, for n > 1, we have [(P) > 1. For
any two vertices z,y, we can now define their p-distance é(z,y) as the
smallest p-length of any path from z to y. Thus é(z,y) = A{I(P)|P is a
path between z and y} if z and y are connected. We define 6(x,y) = oo if
z and y are not connected.
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Proposition 3.1 § is a metric on V. That is, Vz,y,z € V,
(1) é(z,y) =0z =y,
(2) 6(z.y) = é(y, z),
(3) 6(x,2) < b(z,y) + (v, 2).

Proof. (1) Since {(P) =0if z =y and é(z,y) > 1if x # y,6(z,y) =0 &
r=y.

(2) Since reversal of a path from z to y is a path from y to z and vice-
versa, 6(z,y) = 6(y, z).

(3) Since the concatenation of two paths, a path from z to y and a path
from y to z yields a path from z to z, §(z, z) < 6(z,y) + 6(y,2). B

In the crisp case, I(P) is just the length n of P since all the p’s are 1.
Hence, é(z,y) becomes the usual definition of distance, that is, the length
of the shortest path between z and y.

Proposition 3.2 Consider a fuzzy graph G = (u, p) with the vertez set V
and let z,y € V. Let j (1 < j < diam(z,y)) be the smallest possible length
of a path joining = to y and let p™(z,y) be its strength. Suppose further
that there exzists at least one path of length j whose strength is less than

(w1}

Proof. Let P be a path joining z to y with strength p*°(z,y) and having
the smallest path length j where j < diam(z,y). Let the vertices of V be
T =1zo,...,%i...,T;, =Y. Let (u,v) be the edge which gives the strength
of P. In the sum corresponding to the definition of {(P), the contribution
by the edge (u,v) is equal to 1/p*°(u,v). It can now be shown that

Then I(P) = §(x,y).

{(j—l)+ -

J
p (I,y)} sip) <

p(z,y)

Note that the upper bound is achieved when each edge weight is equal to
p>=(z,y) = s(P), where s(P) = AM{p(zi-1,z:) | i = 1,2,...,n}. The lower
bound is achieved when the edge (u, v) has weight p°°(z,y) and the rest of
the edges forming the path P have weight equal to 1 each.

If j =1, then

1 1
"B)=3 T ey
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As 1/p*(z,y) is the smallest possible p-length of any path from z to
y, the result follows in this case. Now, consider the case j > 1. Let P’ be
another path joining x to y with vertices z = zg, ... ,a:; =y. Since P is the
smallest path from z to y having strength p®°(z,y), it follows that

p(Tiz1,7:) 2 p%(2,9),1 < i< 5

so, s(P') < s(P) implies that

1/s(P') 2 1/s(P) =1/p>(z,y).

Now I(P) = é(z,y) if and only if the maximum value of /(P) is less than
or equal to I(P’). That is,

j 1
p”(r,y)SS(P')Jr(] D-

Suppose 7' = fj. Substituting in the above, we get

J

—_ -1.
p>(z,y)

. 1
fjﬁm

Now, let f = 1. This implies that the two paths P and P’ have the same
length. Simplifying the above inequality, we get that s(P’) is less than or

-1
equal to the expression { J (m— -1 ) + 1} and hence the desired
result holds. Il

Example 3.1 Consider the fuzzy graph defined by Figure 3.1. Here,

FIGURE 3.1 p-length equals p-distance.

114

p>(z,y) = 09, diam(z,y) = 4 and 7 = 3. Let P be the path z,u,w,y.
-1
Here, it is easy to see that {j (pT%l?-yT - 1) + 1} = 0.75. Therefore,

s(P') £0.75. In this example we see that s(P') = 1/3 which is indeed less
that 0.75, and thus we have illustrated Proposition 3.2.
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Corollary 3.3 If there exists a path of length j(> 1) whose strength is less

than . .
{j(pw(x,y)‘l)“} |
Then
8(z,y)p™(z,y) < diam(z,y).
3.1 Clusters

In graph theory, there are several ways of defining “clusters” of vertices.
One approach is to call a subset C of V' a cluster of order k if the following
two conditions hold:

(a) for all vertices z,y in C, d(z,y) < k;
(b) for all vertices z ¢ C, d(z, w) > k for some w € C}

where d(u, v) is the length of a shortest path between two vertices u and v.

Thus in a k-cluster C, all pairs of vertices are within distance k of each
other, and C is maximal with respect to this property. That is, no vertex
outside of C is within distance k of every vertex in C.

A 1-cluster is called a clique; it is a maximal complete subgraph. That
is, a maximal subgraph in which each pair of vertices is joined by an edge.
At the other extreme, if we let ¥ — 00, a k-cluster becomes a connected
component, that is, a maximal subgraph in which each pair of vertices is
joined by a path (of any length).

These ideas can be generalized to fuzzy graphs as follows: In G = (g, p),
we can call C' C V a fuzzy cluster of order k if

Mp*(z.9) | 2,y € C} > VIN{p*(w,2) |[w e C} | 2 ¢ C).

Note that C is an ordinary subset of V, not a fuzzy subset. If G is an
ordinary graph, we have p*(a,b) = 0 or 1 for all a and b. Hence this
definition reduces to

(1) p*(z,y) =1 for all z,y in C,
(2) p*(w,z) =0 for all z ¢ C and some w € C.

Property (1) implies that for all z,y in C, there exists a path of length
< k between z and y and property (2) implies that for all 2 ¢ C and some
w € C, there does not exist a path of length < k. This is the same as the
definition of a cluster of order k.
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In fact, the k-clusters obtained using this definition are just ordinary
cliques in graphs obtained by thresholding the kth power of the given fuzzy
graph. Indeed, let C be a fuzzy k-cluster, and let A{p*(z,y) | z,y € C} =t.
If we threshold p* (and p) at t, we obtain an ordinary graph in which C is
now an ordinary clique.

Example 3.2 Let
V ={z,y,2,u,v}

and

X = {(I)y)y (22, Z): (yy Z)a (Z, u, ), (u1 v)}

Let p(z) = p(y) = p(z) = pu) = p(v) =1 end p(z,y) = p(z,2) =
oy, 2) = 1/2, p(z,u,) = p(u,v) = 1/4. Let C = {z,y,z}. Then c,d/éC

o*(c,d) =1/2 for k =1,2,. .,;/ (/\ p(c,e)) = (1/4A0A0)V(OAOA

0) =0, ec ( A p%(c,e)) = (1/4/\1/4/\1/4)v (1/4A0A0) = 1/4, and
gc( A p’"(c e)) = (1/4AN1/4A1/4)V (1/4A1/4A1/4) =1/4 for k > 3.
Hence C = {z,y, z} is a fuzzy cluster of order k for all k > 1.

Now let p(z,y) = p(z,2) = p(y,2) = 1/8, p(z,u) = p(u,v) = 1/4. Then
c,d/(\EC p*(c,d) =1/8 fork =1,2,... . c¥C (cé\c p(c,e)) = (1/4A0AQ)V
(OAOAQ) = O’eé/c (cé\C p%(c,e)) =(1/4A1/8A1/8)V (1/4A0A0) =1/8,
and eé'c (cé\c o*(c.e)) = (1/4A1/8A1/8) v (1/4A1/8 A1/8) = 1/8 for
k > 3. Hence C is a fuzzy cluster of order 1, but not of order k for k > 2.

3.2 Cluster Analysis

In this section, we analyze fuzzy graphs from the viewpoint of connected-
ness. We apply results to cluster analysis. We do not assume our (fuzzy)
graphs are necessarily undirected in this section.

Let G = (u,p) be a fuzzy graph. We denote by M, the corresponding
fuzzy matrix of a fuzzy graph G. In other words, (M,):; = p(vi, v;).

Theorem 3.4 Let G = (V, p,p) be a fuzzy graph such that cardinality of
V isn. Then

(1) if p is reflezive, there exists k < n such that M, < M2 < ... <

k+1,
MK = MEF

(2) if p is irreflerive, the sequence M,, M2, ... is eventually periodic. B
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Definition 3.1 Let G be a fuzzy graph. Let 0 < € < 1. A vertez v is said
to be e-reachable from another verter u if there exists a positive integer
k such that p*(u,v) > €. The reachability matriz of G, denoted by My,
is the matriz of the fuzzy graph (p,p™). The e-reachability matriz of G,
denoted by Mfw, is defined as follows: Mg (u,v) =1 if p(u,v) > € and
Moo (u,v) = 0, otherwise.

The following algorithm can determine the reachability between any pair
of vertices in a fuzzy graph G.

Algorithm 2.1. Determination of Mpe

1. Let R; = (a1, .., ain) denote the i*" row.

2. Obtain the new R; by the following procedure:

a;j(new) =\j/ {\,{ {ak; A aix(old)}}, aij(old)}.

3. Repeat Step 2 until no further changes occur.

4. My (i,7) = aij(new).

Note that a similar algorithm can be constructed for the determination
of Mfee, 0 <€ < 1.

Definition 3.2 Let G be a fuzzy graph. The connectivity of a pair of ver-
tices u and v, denoted by C(u,v) is defined to be p™(u,v) A p>=(v,u). The
connectivity matrix of G, denoted by Cg, is defined such that Cg(u,v) =
C(u,v). For 0 < € < 1, the e-connectivity matriz of G, denoted by Cg, is
defined as follows: Cg(u,v) =1 if C(u,v) > € and Cg(u,v) = 0 otherwise.

Algorithm 2.2. Determination of Cg.

1. Construct M.

2. Ce(i,5) = Ca(4, i) = Mpeo(3,5) N Mpeo(3,2).

An algorithm for determining C§ is similar to Algorithm 2.2.

Definition 3.3 Let G be a fuzzy graph. G is called strongly e-connected
if every pair of vertices are mutually e-reachable. G is said to be initial e-
connected if there exists v € V such that every vertez u in G s e-reachable
from v. A maximal strongly e-connected fuzzy subgraph (M SeCS) of G is

a strongly e-connected fuzzy subgraph not properly contained in any other
MSeCS.

Clearly strongly e-connectedness implies initial e-connectedness. Also,
the following result is straightforward.

Theorem 3.5 A fuzzy graph G is strongly e-connected if and only if there
eTists a verter u such that for any other vertez v in G, p®°(u,v) > € and
p>(v,u) >e
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TABLE 3.1 Fuzzy matrix and connectivity matrix of a fuzzy graph.

1.0 06 04 0.0 00 10000
00 10 02 06 03 01010
M,=1|00 08 10 00 09 C¥%={0010 1
02 07 03 10 02 01010
04 00 05 03 1.0 0 0101

Algorithm 2.3. Determination of all MSeCS in G.

1. Construct C§.

2. The number of MSeCS in G is given by the number of distinct row
vectors in Cg. For each row vector « in Cg, the vertices contained in
the corresponding M SeCS are the nonzero elements of the corresponding
columns of a.

Example 3.3 Let G be a fuzzy graph whose corresponding fuzzy matrices
M, and C%> are given in Table 3.1. We see that the M S0.5CS’s of G
contain the following vertex sets, {1}, {2,4}, {3,5}, respectively.

We now apply the results obtained to clustering analysis. We assume
that a data fuzzy graph G = (V, p) is given, where V is a set of data and
p(u,v) is a quantitative measure of the similarity of the two data items u
and v. For 0 < € < 1, an e-cluster in V is a maximal subset W of V such
that each pair of elements in W is mutually e-reachable. Therefore, the
construction of e-clusters of V' is equivalent to finding all maximal strongly
e-connected fuzzy subgraphs of G.

Algorithm 2.4. Construction of e-clusters

1. Compute p, p?, ..., p*, where k is the smallest integer such that p* =
k+1.
s

ko
2.Lets=U 4"

3. Construct1 F§.

Then, each element in F? is an e-cluster.

We may also define an e-cluster in V' as a maximal subset W of V such
that every element of W is e-reachable from a special element v in W. In
this case, the construction of e-clusters is equivalent to finding all maximal
initial e-connected fuzzy subgraphs of G. However, the relation induced by
initial e-connected fuzzy subgraphs is not, in general, a similarity relation.

Another application is the use of fuzzy graphs to model information
networks. Such a model was proposed in [27] utilizing the concepts of a
directed graph. In [27] a measure of flexibility of a network was introduced.
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Let G = (V,p) be a fuzzy graph. Define the degree of a vertex v to be
d(v) =3 p(v,u). The minimum degree of G is 6(G) = A{d(v) | v € V},
uFv

and the mazimum degree of G is A(G) = v{d(v) |v e V}.

Definition 3.4 Let G; = (V;,p;),i = 1,2 be two fuzzy subgraphs of G =
(V,p). The union of Gy and Ga, denoted by G1 U Ga, is the fuzzy graph
(V'.p'), where V' = ViUV, and

v f pwy) F{uv}CViUV

p(u,v)—{ 0 if {u,v} € ViUV,

Lemma 3.6 Let G = (V,p) be a fuzzy graph and G; = (V;,p;).i1=1,...,7n,
be fuzzy subgraphs of G such that V;NV; =0 fori# j,1<i,j <n, and

U G; is connected. Then

=1

(1) () Gi) = M6(G:) |i=1,...,n},
i=1

(2) A Gi) > V{8(G) |i=1,...,n}. M
=1

Recall that G is said to be connected if for each pair of vertices u and v
in V, there exists a k > 0 such that p*(u,v) > 0.

Definition 3.5 Let G = (V,p) be a fuzzy graph. G is called T-degree con-
nected, for some 7 > 0, if 6(G) > T and G is connected. A T-degree
component of G is a mazimal T-degree connected fuzzy subgraph of G.

Theorem 3.7 For any 7 > 0, the T-degree components of a fuzzy graph
are disjoint.

Proof. Let G and G2 be two T-degree components of G such that their
vertex sets have at least one common element. Since §(G; UG2) > 6(G1) A
6(G2) by Lemma 3.6, G; U G is T-degree connected. Since G, and G, are
maximal with respect to 7-degree connectedness, we have that G; = G2. i

Algorithm 2.5. Determination of 7-degree components of a finite fuzzy
graph G.

1. Calculate the row sums of M,.

2. If there are rows whose sums are less than 7, then obtain a new reduced
matrix by eliminating those vertices, and go to 1.

3. If there is no such row, then stop.
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4. Each disjoint fuzzy subgraph of the graph induced by the vertices in
the last matrix as well as each eliminated vertex is a maximal 7-degree
connected fuzzy subgraph.

Definition 3.6 Let G be a fuzzy graph, and {V;,V2} be a partition of its
verter set V. The set of edges joining vertices of V1 and vertices of V, is
called a cut-set of G, denoted by (V;, V2), relative to the partition {V1,Va}.
The weight of the cut-set (V}, Vz) is defined to be

> puv).

ueV,veVs

Definition 3.7 Let G be a fuzzy graph. The edge connectivity of G, de-
noted by A\(G), is defined to be the minimum weight of cut-sets of G. G is
called T-edge connected if G is connected and A(G) > 7. A T-edge compo-
nent of G is a mazximal T-edge connected subgraph of G.

Example 3.4 Consider the fuzzy graph G given below.

718 78

1/8 38

We summarize different cut-sets along with their weights in Table 3.2.
We see that A(G) = 1/2.

The following results can be proved similar to that of Lemma 3.6 and
Theorem 3.7.

Lemma 3.8 Let G be a fuzzy graph and G;,i = 1, ..., n, be fuzzy subgraphs
n
of G such that V;NV; = 0 for all i,3,71 # j,1 < 4,7 <nand |J G; is

i=1

connected. Then A( 0 G:) > ,7\1 (MGy)). 1
i=1 =
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TABLE 3.2 Cut sets and their weights.

Vi Va weight

{a {b,c,d} g+%=§

{b} {a,c,d} § + §= 1

{c} {a,b,d} ’g + § = %

{d}  {a,b,c} 5 +§ =11

{a,b} {C,d} g-i—g =1

{a,c} {b,d} §+§+§+§=2§
{a,d} {b, C} gtTE= 1%

Theorem 3.9 For 7 > 0, the T-edge components of a fuzzy graph are
disjoint.

The algorithm for determining 7-edge components is based on a result
of Matula [22]. In order to understand the algorithm we need to introduce
the concept of a cohesive matrix and that of narrow slicing. ll

Cohesiveness

Let G = (V, p) be a fuzzy graph. An element of G is defined to be either a
vertex or edge. That is, e either a member of V or e is a pair of members
of V such that p(e) > 0.

Definition 3.8 Let e be an element of a fuzzy graph G. The cohesiveness
of e, denoted by h(e), is the marimum value of edge-connectivity of the
subgraphs of G containing e.

Lemma 3.10 For any fuzzy graph G and element e and 0 < 7 < h(e),
there exists a unique T-edge component of G containing e. B

The unique 7-edge component of G, for 7 = h(e) > 0, containing the
element e has the highest order of the maximum edge-connectivity sub-
graphs of G containing e, and will be termed the h(e)-edge component of
e, denoted by H,.

Example 3.5 Consider the fuzzy graph G given Ezample 2.5. We summa-
Tize the T-edge components of G in the form a table. Recall that if V) is a
subset of the set of vertices of G, (V1) denotes the fuzzy subgraph induced
by V1.
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T T-edge components
(7/8,1]  {{a}),{{b}), ({c}), ({d})
(1/2,7/8] ({c}), {{a,b,d})
[0,1/2) ({e,b,¢,d})

The cohesiveness of an element may be determined from the knowledge of
any subgraph of maximum edge-connectivity containing that given element,
and clearly knowledge of the 7-edge components of G for all 7 > 0 is
sufficient to determine h(e) for all elements e of G. The following theorem
shows an important converse relation, that by utilizing the cohesiveness
function it is possible to readily determine H, for any element e with h(e) >
0.

Theorem 3.11 Let e be an element of the fuzzy graph G with h(e) > 0.
Let M, be a mazimal connected fuzzy subgraph of G containing e such that
all elements of M, have cohesiveness at least h(e). Then M, = H.. B

Corollary 3.12 For any fuzzy graph G and any 7 > 0, the elements of G
of cohesiveness at least T form a fuzzy graph whose components are T-edge
components of G.

Corollary 3.13 If G’ is an T-edge component of the fuzzy graph G for
some T > 0, then G’ = H, for some element e of G. R

Slicing in Fuzzy Graphs

An ordered partition of the edges of the fuzzy graph G, (C;,Cs....,Cn),
is a slicing of G if each member

G fori=1
i-1
G\U C; for2<i<m

Jj=1

C; is a cut-set (A;, A;) of {

A member of the slicing will also be termed a cut of the slicing. A slicing
of G, which is minimal in the sense that there is no subpartition which is
a slicing of G, is called a minimal slicing of G. Clearly each cut C; of a
minimal slicing must be a minimal cut of some component of G \ UJ_1
Further, a slicing of G is a narrow slzczng of G,ifeachcut C; is a Immmum
cut of some component of G \ UJ_1 C;. Note that the notion of slicing

pertains only to graphs with at least one edge.
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A slicing may be given a dynamic interpretation as a sequence of nonvoid
cuts which separates G into isolated vertices and a minimal (narrow) slicing
effects this separation using only minimal (minimum) cuts at each step.
This provides a way to compute the minimal (narrow) slicing. However, we
want to make the observation that a narrow slicing is a minimal slicing but
not vice versa.

Algorithm 2.6. Narrow slicing of connected fuzzy graph G.
1.Z2=0,G; =G,i=1.
2. While G; # 0 do
V = the vertex set of G;.
v = a vertex in G; with minimum degree.
Ci = ({v},V\{v})
Z=27ZU {Ci}
i=i+1
G; = the fuzzy subgraph induced by V' \ {v}.
3. Z is a narrow slicing of G.
The following result is an important link between narrow slicing Z and
the cohesive function h on a fuzzy graph.

Theorem 3.14 Let Z = (C1,Cs,...,Cn) be a narrow slicing of G ob-
tained by successively removing one verter at a time. Let Gy = G D G D
... 2 G be the sequence of fuzzy subgraphs left after each slicing. Then
h(e) = A{A(Gi)le€ Gi;,1<i<m}. 1

Example 3.6 Let G be a fuzzy graph such that

a b c d e
0.0 08 02 00 0.0
0.8 0.0 04 00 04
0.2 04 00 08 03
00 00 08 00 0.8
0.0 04 03 08 00

M,

o _AO OR

As in the Algorithm 2.6, let Gy denote the fuzzy graph G. Computing the
sum along each row, we have

a b c d e
10 16 1.7 16 15

The minimum value occurs at row a. So we set C; = ({a},{b,¢c,d,e})
and let G2 be the fuzzy subgraph induced by the vertez set {b,c,d,e}. Note
that A(G1) = 1.0 and edges (a,b) and (a,c) appear only in Gy. It follows
that h(e) = 1.0 for e = (a,b),(a,c). Now the matriz associated with the
fuzzy subgraph Go is given by
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b c d e
0.0 0.4 00 04
04 00 08 03
0.0 08 0.0 08
04 08 08 00

o /a0 o

Computing the sum along each row, we have

b c d e
08 15 16 1.5

The minimum value occurs at row b. Hence Cy = ({b},{c,d,e}) and
G3 1is the fuzzy subgraph generated by the verter set {c,d,e}. Note that
MG2) = 0.8 and edges (b,c) and (b,e) appear in G, and G2 and hence
h(e) =1.0A0.8 =0.8 for e = (b,c), (b,e). Now the matriz associated with
the fuzzy subgraph G3 is given by

c d e
c 00 08 03
d 08 00 08
e 08 08 0.0

Proceeding along these lines, we obtain the following cohesive matrix
(where ith row jth column entry denote the cohesiveness of the edge (i,5)
if i # j and the cohesiveness of the vertez i if i = j, for i,j € {a,b,c,d, e})

a b c d e
00 10 1.0 1.0 1.0
10 00 1.0 1.0 1.0
1.0 1.0 0.0 1.1 1.1
1.0 10 11 00 1.1
1.0 1.0 1.1 1.1 0.0

o /A O oK

and the narrow slicing

(({a} {b,c.d,e}), ({8}, {c,d.e}), ({e}, {c,d}), ({c}. {d}))-

We are now ready to present an algorithm for the determination of T-edge
components of a fuzzy graph G.

Algorithm 2.7. Determination of 7-edge components of a fuzzy graph
G.

1. Obtain the cohesive matrix H of the M,.

2. Obtain the 7-threshold graph of H.

3. Each component of the graph is a maximal T-edge connected subgraph.



96 3. APPLICATIONS OF FUZZY GRAPHS

Example 3.7 Consider the fuzzy graph G in the Example 3.6. The T-edge
components of G for various values T can be summarized as follows.

T T-edge components
(1.1,00)  ({a}), ({6}), {{c}), ({d}), ({e})

(1.0,1.1] ({a}), ({b}), ({c,d,e})
[0,1.0] ({a,b,c,d,e})

Definition 3.9 A disconnection of a fuzzy graph G = (V, 11, p) is a vertex
set D whose removal results in a disconnected or a single vertex graph. The

weight of D 1is defined to be 5> A{p(v,u)|p(v,u) # 0,u € V}.
v€D

Definition 3.10 The vertex connectivity of a fuzzy graph G, denoted by
Q(G), is defined to be the minimum weight of disconnection in G. G is said
to be T-vertez connected if Q(G) > 7. A T-vertex component is a mazimal
T-vertex connected subgraph of G.

Note that 7-vertex components need not be disjoint as do 7-degree and
T-edge components. The following result is straightforward.

Theorem 3.15 Let G be a fuzzy graph, then Q(G) < A(G) < §(G). R

Theorem 3.16 For any three real numbers a,b, and ¢ such that 0 < a <
b < c, there exists a fuzzy graph G with Q(G) = a, A\(G) = b, and §(G) = c.

Proof. Let n be the smallest integer such that ¢/n < 1, and let o’ =
a/n,¥ =b/n,and ¢ = c¢/n. Then 0 < o’ < ¥ < ¢’ < 1. Let G be the fuzzy
graph constructed as follows. The vertex set is the union of three sets A =
{wo,ur,ug, ..., un}, B = {vo,v1,v2,...,v,}, and C = {wo, w1, wo, ..., w,}
each containing n + 1 vertices. Let < X > denote the fuzzy subgraph
induced by the set X, for X = A,B,C. In C,d(wo) = nc’ and d(w;) =
(n=1)+c +¥ for 1 <i < n.In other words, < C\ {wg} > is 1.0-complete
and < C > is ¢’-complete. In B, d(vg) = n+1 and d(v;) = n+(n—1)+a’+¥
for 1< i< n. < B > is 1.0-complete. In A,d(ug) = n + 1 and d(u;) =
n+(n—1)+a’ for 1< i < n. < A > is 1.0-complete. Connections between
subsets are as follows. Each w; is connected to v; with fuzzy value b for
1 <7 < n. And each u;(i # 0) is connected to v; with fuzzy value a’ and
to v;’s (j # 4,0) with fuzzy value 1.0. Finally ug is connected to vy with
fuzzy value 1. All other edges in the fuzzy graph have value 0. Now we will
show that G thus constructed satisfies the conditions imposed.

(1) From the process of the construction described above it is clear that
6(G) =d(wp) =nc’ =c.

(2) The number of edges in any cut of the subgraphs < A >,< B > or
< C > is greater than or equal to n since < A >, < B > and < C > are c'-
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complete. Therefore the weight of a cut is greater than or equal to nc’, which
means that the weight of any cut which contains a cut of < A >,< B >
or < C > is greater than or equal to nc’. Only other cuts which do not
contain a cut of < A >,< B > or < C > must contain the cut (4, BUC)
or (AUB, C). The weight of the cut (A4, BUC) is 14+n(n—1)+na’ and that
of the cut (AU B,C) is nb’. Now nd’ < nc’ and nb’ < 1+ n(n —1) +na’.
Hence A(G) =nb' =b.

(3) Let us determine the minimum number of vertices in disconnection
of G. Since < A >,< B > and < C > are at least ¢-complete, they can
be disconnected or become a single vertex by removing at least n vertices.
Only other possible ways to disconnect G are disconnections between A, B,
and C. Since < (A\ {uo})U(B\{vo}) > is a a’-complete and ug and vg are
connected to each other and to < (A\{ug})U(B\{vo}) >, any disconnection
must contain at least n + 1 vertices. On the other hand, since < B > and
< C > are connected by n edges, at least n vertices have to be removed
to disconnect < AU B > and < C > . But since vertices on both sides of
edges are all different, at least n vertices have to be removed. Therefore, at
least n vertices have to be removed to disconnect the graph G. Then since
A f(v)|v € V} = a’ and actually {v;, vs, ..., v, } is a disconnection of G, the
weight of the disconnection {vy,v2, ..., v, } specifies the vertex connectivity
of the graph G, namely, Q(G) =na’ =a. R

3.3 Application to Cluster Analysis

The usual graph-theoretical approaches to cluster analysis involve first ob-
taining a threshold graph from a fuzzy graph and then applying various
techniques to obtain clusters as maximal components under different con-
nectivity considerations. These methods have a common weakness, namely,
the weight of edges are not treated fairly in that any weight greater (less)
than the threshold is treated as 1(0). In this section, we will extend these
techniques to fuzzy graphs. It will be shown that the fuzzy graph approach
is more powerful.

In Table 2.4, we provide a summary of various graph theoretical tech-
niques for clustering analysis. This table is a modification of table II in
Matula [21]. For cluster procedures (1),(2), and (3) the cluster indepen-
dence can be considered to be disjoint while that of cluster procedure (4)
is limited overlap and that of (5) is considerable overlap. The extent of
chaining is high, moderate, low, low, and none for cluster procedures (1) —
(5), respectively.

In the following definition, clusters will be defined based on various con-
nectivities of a fuzzy graph.
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TABLE 3.3 Cluster procedures.

Cluster Graph theoretical

interpretation
procedure of clusters
) Single Maximal connected
linkage subgraphs

Maximal connected
(2) | k-linkage subgraphs of
minimum degree

3) k-edge Maximal k-edge

connectivity connected subgraph
Maximal k-vertex

) k-vertex connected subgraph and

connectivity Cliques on k or less
vertices

Complete .

5) linkage Cliques

Definition 3.11 Let G = (V,p) be a fuzzy graph. A cluster of type k
(k =1,2,3,4) is defined by the following conditions (1), (2), (3), and (4)
respectively.

(1) mazimal e-connected subgraphs, for some 0 < e < 1.
(2) mazimal T-degree connected subgraphs.

(8) mazimal T-edge connected subgraphs.

(4) mazimal T-vertez connected subgraphs.

Hierarchial cluster analysis is a method of generating a set of classifica-
tions of a finite set of objects based on some measure of similarity between
a pair of objects. It follows from the previous definition that clusters of type
(1), (2), and (3) are hierarchial with different € and 7, whereas clusters of
type (4) are not due to the fact T-vertex components need not be disjoint.

It is also easily seen that all clusters of type (1) can be obtained by the
single-linkage procedure. The difference between the two procedures lies in
the fact that e-connected subgraphs can be obtained directly from M, by
at most n — 1 matrix multiplications (where n is the rank of M¢), whereas
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in the single-linkage procedure, it is necessary to obtain as many threshold
graphs as the number of distinct fuzzy values in the graph.

Output of hierarchial clustering is called a dendogram which is a directed
tree that describes the process of generating clusters.

In the following, we will show that not all clusters of types 2, 3 and 4 are
obtainable by procedures of k-linkage, k-edge connectivity, and k-vertex
connectivity, respectively.

Example 3.8 Let G be a fuzzy graph given in Figure 3.2(a). The dendro-
gram in Figure 3.2(b) indicates all the clusters of type 2.

FIGURE 3.2 A fuzzy graph and its clusters of type 2.
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FIGURE 3.3 Dendrograms for clusters obtained by k-linkage method for
k=1 and 2.
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(a) (b)

1t is easily seen from the threshold graphs of G that the same dendrogram
cannot be obtained by the k-linkage procedure. Those for k =1 and 2 are
given in Figures 3.8(a) and 3.3(b), respectively.

Theorem 3.17 The T-degree connectivity procedure for the construction
of clusters is more powerful than the k-linkage procedure.
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Proof. In light of Example 3.8, it is sufficient to show that all clusters
obtainable by the k-linkage procedure are also obtainable by the T-degree
connectivity procedure for some 7. Let G be a fuzzy graph. For 0 < e <1,
let G’ be a graph obtained from G by replacing those weights less than € in
G by 0. For any k used in the k-linkage procedure, set 7 = ke. It is easily
seen that a set is a cluster obtained by applying the k-linkage procedure to
G if and only if it is a cluster obtained by applying the T-degree connectivity
procedure to G'. Il

FIGURE 3.4 A fuzzy graph and its clusters of type 3.
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FIGURE 3.5 Dendrograms for clusters obtained from k-edge method for
k=1and 2
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Example 3.9 Let G be a fuzzy graph given in Figure 3.4(a). The dendro-
gram in Figure 3.4(b) gives all clusters of type 3.1t is clear by examining
all the threshold graphs of G that the same dendrogram cannot be obtained
by means of the k-edge connectivity technique for any k. Those for k =1
and 2 are given in Figure 3.5.
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By Example 3.9 and following same proof procedure as in Theorem 3.17,
we have the following result.

Theorem 3.18 The T-edge connectivity procedure for the construction of
clusters is more powerful than the k-edge connectivity procedure. B

Example 3.10 Let G be a fuzzy graph given in Figure 3.6(a). The den-
drogram in Figure 8.6(b) provides all clusters of type 4.

FIGURE 3.6 A symmetric graph and its clusters of type 4.
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FIGURE 3.7 Dendrograms for clusters obtained from k-vertex method for
k=1 and 2.
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It is easily seen that the same dendrogram cannot be obtained by means
of the k-vertez connectivity technique for any k. Those for k =1 and 2 are
giwen in Figure 3.7.
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Following the same proof procedure as in Theorems 3.17 and 3.18, we
conclude with the result below.

Theorem 3.19 The 7 —vertex connectivity procedure for the construction
of clusters is more powerful than the k-vertex connectivity procedure.

3.4 Fuzzy Intersection Equations

We give necessary and sufficient conditions for the solution of a system of
fuzzy intersection equations. We also give an algorithm for the solution of
such a system. We apply the results to fuzzy graph theory.

In [20], Liu considered systems of intersection equations of the form

e11TI N ... AeinZn = by
(3.1)

€m1Z1I A .. A €Ty = by

where e;; € {0,1} and b;, z; € L where L is a complete distributive lattice,
i=1,..,m;j = 1,...,n. In this section, we consider systems of equations
of the form (3.1), where L is the closed interval [0,1]. Although this case
is more restrictive, our approach is entirely different than that in [20]. The
specificity of [0,1] yields different types of results than those in [20]. We
show that system (3.1) is equivalent to several independent systems of the
type where b = ... = b,,. Also our proofs concerning the existence of
solutions are constructive in nature. In fact, we give an algorithm for the
solution of a system of intersection equations. We also give two applications.
One application is in the area of fuzzy graph theory.

Ezistence of Solutions

We write the system (3.1) in the matrix form EZ = b, where E = [e;;],

I bl
2 -

T= and b =
Tn b

We assume throughout that Vj = 1,...,n,3i such that e;; = 1. We also
assume that the equations of (3.1) have been ordered so that bg, 41 = ... =
by, <bg41=...=bg, < ...<bgq1=..=by, where0)=¢q; < g2 <...<
gev1 =m. Let I, = {g- +1,...,¢r41} for r =1,...,¢t. For each j = 1,...,m,
let 7} denote the maximum ¢ such that e;; = 1. Let e},; = OVh € Uity A
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and e}, = en;Vh € Ui~ 15, where i} € I,. Let

*

elj
*

62]-

E; =

mj

Let E* = (EY, ..., E}).
Theorem 3.20 EZ =b and E*Z = b are equivalent systems.

Proof. Let i be any row of E and j any column. Suppose that e;; = 1.
Let i € I,.. Suppose 3h € I,,s < r, such that ep; = 1. Let E’ be the matrix
[e1;] where e, = ey if (u,v) # (h,7) and €, = 0 if (u,v) = (h, ). That
is, E’ is obtained from E by replacing the hj-th component of E with 0.
It suffices to show that E'Z = b and EZ = b are equivalent. Now the h-th
equations of E'Z = b and EZ = b are

en1Zi A ... AOZ; A ... A epnZn = by 41 (3.2)

and

enTy A .. ALT; A ...\ epnTn = bg, 41, (3.3)

respectively. The other equations of E'Z = b and EZ = b are identical to
each other. Since e;; = 1, we have that z; > bg_ 41 > bg,4+1. Thus equation
(3.2) and the i-th equation are equivalent to equation (3.3) and the i-th
equation. Hence the desired result follows. Il

Example 3.11 Consider the following systems of intersection equations:

Ty NTg ATy =1/2

zoNz3 =3/4
and

1 NTy = 1/2

o Nx3 = 3/4
and

)y ANx3 = 1/2
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Ty ANx2 A3 23/4
and

I = 1/2

T1 ANZ2 Ax3 =3/4.

The first two systems are equivalent while the last two systems are equiv-
alent. The last two systems have no solution. In both pairs of systems, j = 3
and i} = 2.

J

Theorem 3.21 Consider the system ET = b.
(1) The system has a unique solution if and only if Vr = 1, ..., t,the system

* - > = —
Eqrﬂz = bg, 41, - Eqrﬂa: =bq,,,

has a unique solution.

(2) The system is inconsistent if and only if 3 € {1,...,m} such that
bi>0andel;, =..=¢, =0.

Proof. (1) Suppose that ¢ € I. and h € I, where 7 # s. Then ej; = 1
implies e}, = 0. That is, the t systems

™ = = = _ _
Eqr+1x = bq.-+1: ...,Eqr+lx = bq'_+| T = 1, ...,t,

pairwise involve distinct unknowns.
(2) Since the t systems in (i) pairwise involve distinct unknowns,

E*z=%

is inconsistent if and only if one of the ¢ systems is inconsistent. The desired
result now follows by applying the condition in (ii) individually to the ¢
systems. ll

For the matrix F, let E; denote the i-th row of E,7 = 1, ..., m. We write
E, < Ej if and only if Vk = 1,...,n,egx = 1 implies epr = 1. We write
Ey < Ey if and only if E; < E} and E; # Ej. The addition of two rows of
E is componentwise with0+0=0,0+1=1+0=14+1=1.

Corollary 3.22 Consider the system EZ = b. Then EZ = b is inconsistent
if and only if 3i, h, ..., € {1,...,m} such that b; > 0,7 € I, and hy € I,
withr < sy foru=1,..,k and E; < Ep, + ... +E4,.
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Proof. There exists i € {1,...,m} such that e}; = ... = e, = 0 if and only
if 3, hy, ..., b € {1,...,m} such that i € I and h, € I,, with r < s, for
u=1,..,kand E; < Ep + ... + Ep,, . 1

We now examine the case where b; = ... = by,,. Let i € {1,...,m}. Suppose
that 3E;, , ...,E-,;k‘ <E.If E,'1+ +E-,;k‘, < Ej;, then let Cij = 0if €. = 1
for some 7 = 1,...,k; and c;; = e;; otherwise, j = 1,...,n. If no such E;_
exist let ¢;; = €;5,7 =1, ...,n. Let C; = (¢iy, -+, Cin) and C = (Cy, ...,Cm)T,
i.e., C is the transpose of the matrix (C, ...,Cm). (If Ei, + ... +E;, = E;,
then the i-th equation may be deleted.)

Theorem 3.23 Suppose that by = ... = b, = b in system (3.1). Let C
denote the matriz defined above. Then the systems EZ = b and CZRb are
equivalent where R indicates that the relation in the i-th equation is either
“=7 or “>7 depending upon whether C; = E; or C; # E;, respectively.

Proof. Let S(0) denote the system EZ = b and let S(i) denote the sys-
tem obtained from S(0) by replacing its i-th equation by C;ZR;b where R;
denotes “=" or “>". Let T(i) be the system CiZRyb,...,CiTR;b, Ei1T =
b,.... E,Z = b. Itlseasﬂyseenthat E,z=b,..,E; a:—bE'a:—ba.nd
E,I =b,..,E; T = b,CiTR;b are equivalent. Thus S(0) and S(¢) are
equivalent Vz' = 1 ,m. Now T(1) = S(1) and so S(0) and T'(1) are equiv-
alent. Assume that S (0) and T'(%) are equivalent (the induction hypothesis).
We now show that S(0) and T'(i + 1) are equivalent. Hence the result holds
by induction. As noted above, S(0) and S(i + 1) are equivalent. Let the
(+1)-st equation of S(0) (and thus of T'(z)) be denoted by y; A...Ayn A21A
... Azy = b where y1, ..., Yn, 21, ---» 2k € {Z1, ..., Zn} and where the (i + 1)-st
inequality of S(i + 1) is A ... Azx > b. Now {y1,...,yn} N {21, .-, 2k} =
0. Also, y3 A ... Ayn A z1 A... Az = b is equivalent to (1A ... Ayr, = b
and z;) A...Azg > b)or (y1 A... Ayn > band 2z A ... A 2 = b). Since T'(z)
and S(i + 1) are each equivalent to S(0), 7'(:) and S(i + 1) are equivalent.
Hence the system T'(z) minus the (i+1)-st equation and the system S(i+1)
minus the (i + 1)-st inequality individually imply 1A ... A yp = b. Thus
we have the equivalence of T'(i + 1) and S(i + 1) and thus the equivalence
of T(i + 1) and S(0). W

System (3.1) with b; = ... = b,, is consistent if and only if V7,37 such
that €ij = 1.

Example 3.12 Consider the following system S(0) :

T3 Nz ANx3 =0
1Az =0

TiANzo Az3ATg=0.
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Let i = 1. Then E» < Ey. Applying Theorem 3.23, we obtain S(1) -
3> b

I]/\$2=b

121/\.’1:2/\173/\1?4=b.

Let i = 2 in S(0). Then S(2) = S(0). Let i = 3 in S(0). Then E\+
E» < E3. Applying Theorem 3.23, we obtain S3):

Ty Ao Az3=Db

T AT =0b
Ty 2 b
Thus T(3) is the system
z3>b
Ty AT =b
T4 Z b.
Theorem 3.24 Suppose that by = ... = by, = b in system (3.1). Let C be

the matriz as defined above. Suppose that chx = cik = 1,h # 1, for some
i,k where CyZ > b and CiZ = b. Suppose that Ch£C;. Let dpi = 0 and
dyy = cuy if (u,v) # (h,k). Let D = [di;]. Then Crz > b,C;z = b are
equivalent to DRT > b, D;T =b.

Proof. Both systems force zx > b.

If Ci, < C;, then drop the h-th equation. In fact, if ChZ > b, CpnZ=..=
Ch,Z =band Cp < Ch, + ... + Ch,, then drop the h-th equation.

We also note that z; A z2 > b is equivalent to 2; > b and zo > b. B

Example 3.13 The following systems are equivalent:

ToANZ3 > b
I /\.’C2=b
and

173_>_b

1 ANz =b.

Hereh=1andi=k=2.
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Example 3.14 The following systems are equivalent:

T2 ANx3 2 b
I /\132=b
T1 /\133=b
and

Ty Az2="b
z1Az3 =0

In the first system, C; < Cq + Cj.

To solve a general system of intersection equations, we may use the fol-
lowing algorithm. We use the notation E; to denote the complement of E;.
We let @ denote the zero vector. We also assume that b; > 0.

Algorithm 2.8.

1. Sort the E; so that the b;’s are in nondecreasing order.

2.1. Let Temp and Total each be a row of n zeros

2.2. Let c=b,,

2.3. For i = m down to 1 do

if b; = ¢ then
Temp = Temp + E; and E; = E] NOR Total
if ¢ > b; then
¢ = b;,Total = Total + Temp,Temp = E;
and E; = E! NOR Total
24.If 3,1 <i<m,E; =86, then
INCONSISTENT and STOP

3. For each distinct by

3.1. Let Ej,7; < j < i, be all rows such that b; = by where1 < i;,ix <m

3.2. Let O; be the number of 1’s in E;

3.3 Sort Ej’s such that O;’s are in nondecreasing order

3.4. Let T be a row of n zeros

3.5. For z = i; to i do

3.5.1. For y =z — 1 down to ¢; do

if E;, NOR E; = 6 then

T=T+E,
3.5.2. If T = E, then
erase E., R.,b,

3.5.3 Else if T # 6 then
Cr;:=E;XORTand R, =" >’
3.5.4 Else
C.=E,
4. For each distinct b
4.1. While 3C; and Cj such that

(1)b; = b, = bi
(R ="=
(3)R; = ‘>’ and

(4)C’: NOR C; # 6 do
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C; =C; NORC;

4.2. Let T, = Y C:iVC; such that b; = by and R; = ‘=’

4.3. If 3C; such that (1)R; = ‘>’ and (2)C! NOR T = 0 then
erase C; and b; from matrices C' and b, respectively.

The time complexity of the algorithm is easily seen to be O(m?n). If each
row in E and C is denoted as a binary number, then the time complexity
becomes O(m?).

A unique minimal solution can be immediately determined.

The results of this section can be applied to those of Section 2.4 as we now
describe. Suppose that G is the Cartesian product of two graphs G; and
Go. Let (u, p) be a partial fuzzy subgraph of G. Then (g, p) is a Cartesian
product of a partial fuzzy subgraph of G; and a partial fuzzy subgraph
of Gy if and only if the system of intersection equations as described in
Theorem 2.57 has a solution.

The composition of fuzzy graphs is also defined in Section 2.4. If (u, p) is
a partial fuzzy subgraph of the composition G [G2] of graphs G; and G,
then necessary and sufficient conditions are given in Section 2.4 for (u, p)
to be the composition of partial fuzzy subgraphs of G and G2 in terms of
the existence of a solution to a system of fuzzy intersection equations.

3.5 Fuzzy Graphs in Database Theory

We now give an application of fuzzy graphs to database theory as developed
in [16]. We examine fuzzy relations which store uncertain relationships
between data. In classical relational database theory, design principles are
based on functional dependencies. In this section, we generalize this notion
for fuzzy relations and fuzzy functional dependencies. Results presented are
useful for designing fuzzy relational databases.

Definition 3.12 Let U = {A;,...,An} be the set of attributes and each
A; is assigned to the set of possible values DOM(A;). A fuzzy subset p of
the Cartesian cross product x_ DOM(A;) s called a fuzzy relation on
X ?=1 DOM (A,)

In classical database theory, functional dependencies play important roles.
A functional dependency ‘X functionally determines Y in R’ means for any

two tuples of the relation R, if the X values are the same, then the Y values
are also same. In other words, x x_,y is equivalent to

V1, ta((R(t1) .and. R(tz) .and. t; [X] = t2[X]) = &1 [Y] = t2[Y]).

For example, consider the relation R given below:
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o0 0
o~ o o by
QA a0 O

Note that A functionally determines B since for any two rows (known as
tuples in database theory) ¢; and t; of R, if their values in column (known
as attribute in database theory) A are the same then those tuples have
identical values in column B. However, A does not functionally determine
C since considering the first two rows observe that while the column A
values are identical, the column C values are not identical. It may be noted
that C functionally determines B and B does not functionally determine
A.

We get a fuzzy version of the formula when we substitute the operators
.and., V with the operators min (A), inf (A) and .or., 3 with max (V), sup
(Vv), and = with —, where the implication — is defined as follows:

o b= 1 ifa<b
T 1 1-=(a—"5), otherwise

and finally .not. with —, where —a = 1 — a. In this way, we get that the
truth value of the fuzzy relation p satisfies a given functional dependency
X-Y:

u(X,Y) = 1= V{p(tr) A pltz) | 01 [X] = t2 [X] but &y [Y] # 12 [V},

where ¢, and t; are any two tuples of p. As in the classical database theory,
we denote the union of attributes X and Y by XY.

Example 3.15 Consider the fuzzy relation p on DOM(A) x DOM(B) x
DOM(C).

A B C p)
a b ¢ 1

a b f 08
e d ¢ 07
e b f 06

The fuzzy relation p generates the following truth values.

u(A,B) =04, w(B,C)=02 u(C,A)=03,
u(A,C) =02, w(B,A) =04, u(C.B)=03
u(AC,B) =1, u(BC,A) =04, u(AB,C)=0.2,
w(AB,B) =1, u(AB,A)=1.
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Fuzzy functional dependency satisfies the following properties.
Al fY C X, then u(X,Y) =1,

A2 w(X,Y) Au(Y, Z) < u(X, 2),

A3 u(X,Y) < u(XZ,YZ).

From these, other properties can be obtained:

Bl p(X,Y)Au(Y,2) < p(X,YZ),

B2 p(X,Y) Au(WY, Z) < w(XW, 2),

B3 if Z CY, then pu(X,Y) < p(X, 2).

An important consequence is that u(X,Y) = A{u(X,A)|A: AcY}.

Thus a fuzzy relation generates another a fuzzy relation u(X,Y) on U?
with the properties Al - A3.

Moreover, if there is given an arbitrary fuzzy relation 7(X,Y) on U?,
then it defines the fuzzy relation 71(X,Y) which is the smallest fuzzy
relation on U? that contains 7(X,Y) and has the properties Al - A3. We
call 71 (X,Y) the closure of 7(X,Y). (Recall that 71(X,Y) C 72(X,Y) if
and only if 71(X,Y) < (X, Y)VX, Y CU))

The closure is well defined because the fuzzy relation ¢(X,Y’) = 1 satisfies
Al - A3 and contains every fuzzy relation on U2, and if 7 C ¢1,7 C <2,
where ¢y, g2 satisfy Al - A3, then 7 C ¢; N and ¢; Ny also satisfies Al
-A3. (s1N62(X,)Y) :=61(X,Y) Ao(X,Y) for all X, Y CU.)

Proposition 3.25 77 (X,Y) is a closure, that is
(1) 7(X,Y) C T(X,Y),
(2) THH(X,Y) =1H(X,Y),
(3) if T1(X,Y) C 72(X,Y), then 7H(X,Y) C 73 (X,Y).
Proof. The proof follows from the fact that closure is the smallest with

the given properties. B

Now we extend 77 (X, A) for fuzzy subsets o as follows: Let ¢ be a fuzzy
subset on U and

7(0,4) =V{(t*(Z,A)AN) | Z C U, X € [0,1],25 C g}
where for X € [0,1] we define

A, fAeZ
2x\(4) = { 0, otherwise.
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With the help of T}' (o, A), we define a closure set on U as follows: Let
o be a fuzzy subset on U. Then o is also a fuzzy set on U and defined by
o*t(A4) =T7f(0,A) forall A U.

First note that 7§ (o, A) = 7%(X, A) if X is a crisp set, that is X(4) =1
or 0 for all A € U. This is true because 77 (X, A) is an increasing function
in the argument X.

Proposition 3.26 o% is a closure on U, that is
(1) o Cot,
(2) if o C p, then ot C pt,
(3) ottt =o™.

Proof.

(1) o(A) =7(A,A)ANo(A) <o*(A) for all A€ U.

(2) o C p implies that for all Z, for the definition of o+ (A) are good for
the definition of p*(A) as well.

(3) o7(A4) < o**(A) holds by (1) and (2). ot+(A) =75%(0,A) and
for some Z = B1Bs...B; C U, it is equal to 7%(Z, A) A (Aezot(B)) =
7H(Z, A) A (NS, (7F(p;, Bi) A Ai), where (p;)x, € o. Now let p = UL p;
and A = AL ), then p, C o. We have 7+(p, Z) = AL 71 (p, B;) and
7+(p;, Bi) < 71 (p, B;) for all : = 1,..., k. Therefore our expression is not
greater than 77 (Z,A) A 7(p,Z) A X and for A2 it is not greater than
(p, A) AX S Vwawac o(TH(W, 4) A a) = 0T (A).

|

Representation of Dependency Structure 7(X,Y) by Fuzzy
Graphs

Let 7(X,Y) be a fuzzy relation on U?. We correspond to 7(X,Y) a fuzzy
graph Gt = (w, p) as follows. The vertices are ordered pairs (X,Y’) such
that V(X,Y) = 7(X,Y). Edges are ordered pairs of vertices such that
P((X.Y), (X, 2)) = (Y, Z).
The following algorithm gives 7+ (X,Y) by modifying step by step the
labels of the graph:
Algorithm 2.9.
LForallY C X let w((X,Y))=1.
2. while (STAT1 is true or STAT?2 is true) do
(where STAT 1 is true means
there exists an edge e = (v, v2) so that
w(v2) < w(vy) A w(e),
and STAT? is true means
there are vertices v; = (X,Y) and v, = (XZ,Y Z) so that
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w(ve) < w(v1))
if (STAT1 is true) then
w(v2) = w(v1) A p(e);
for all edges d = ((X,Y), (X, Z)) where vy = (Y, Z),
p(d) = w(v2);
if (STAT?2 is true) then
w@(v2) = w(v1);
for all edges d = (W, X Z),(W,Y Z)) where v, = (XZ,Y Z),
p(d) = w(v2);
3. 7H(X,Y) = w(v), where v = (X, Y).

Proposition 3.27 The algorithm is correct.

Proof. First it stops in finite time because the range of the label function
{ is finite, and when a label value is modified it is changed with a greater
value from the range.

So the algorithm produces a sequence of graphs Gg, Gu, ..., Gk—1 = Gk,
where Gg = G and we get G; when we do all changes of the label values
induced by STAT1 or STAT2. Let [; be the label function of the graph
G; and T4(X,Y) = l;(v), where v = (X,Y), for all i = 0,...,k. Then ob-
viously 7 C 7% and 7* satisfies Al - A3, otherwise the graph can still be
modified. Thus 7+ C 7%. If 7+ C 7% were true, then there would be an
i € [0,k — 1] such that 7° C 7+ C 7+, If G;4, is obtained by STAT1 with
v = (X,Y),v2 = (X,Z) and e = (v1,v2) then 7H(X, 2Z) < 7*1(X, 2)
=X, Y)AT(Y,2) < 7H(X,Y) A TH(Y, Z), which is a contradiction.
If G;4, is obtained from STAT2 with v; = (X,Y), vo = (XZ,YZ), then
™(X2,YZ) < ™Y XZ,YZ) = r(X,Y) < 7F(X,Y), which is a contra-
diction.

Since 0% (A) is defined by 7*(X, A) when X is a crisp set on U, it can
be computed by this algorithm as well.

3.6 A Description of Strengthening and Weakening
Members of a Group

The results in this section are from [33]. Matrix analysis is used to iden-
tify various aspects of group structure. These include redundancies [31],
complete cycles [12], liaison persons [32], and cliques [13]. The structural
concepts are developed in (9, 10].

There are groups in which some members are seen as exercising a dis-
ruptive or divisive influence while other individuals appear to help hold
the group together. Although there are a number of ways in which these
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weakening and strengthening effects of group members may be conceptu-
alized, we shall confine our discussion to one that is suggested by and can
be coordinated to various kinds of connectedness of “directed graphs” or
“digraphs.”

A digraph becomes a mathematical model for the structure of a group
of people when its points represent the members of the group and the
(directed) lines the relationships between pairs and members. The group
structure may be built from many different kinds of relationships, such as
sociometric choice, communication, or power. Hence it may be useful to
have a way of characterizing, in digraph terms, the way in which individual
members contribute to the connectedness of the group.

In order to give precise meanings to these concepts, we coordinate the
structure of a group to a digraph. Then the kinds of connectedness a group
may possess correspond to the four kinds of connectedness a digraph may
have. A digraph is a pair (V, P), where V is a finite set and P is a subset
of V x V. The elements of V are referred to as points or vertices or nodes.
Let < z,y > € P. lf z # y, then < z,y > is called a (directed) line or a
directed edge or an arc. Further, < z,y > is sometimes denoted as z — y. If
z =y, then < z,y > is called a loop. Let yo, 41, .. ., yx be distinct members
of V. The set {< yo,y1 >, < ¥1,¥%2 >, < ¥Y2,¥3 >, ..., < Yk—1, Y& >} is called
a directed path from yg to yi of length k. The distance between z and y is
the length of a shortest path from z to y. Although the digraph model is
capable of describing several different kinds of bonds or lines at the same
time, we shall confine ourselves to the simplest case in which the existence
of lines implies the same characteristic of the relationship between each
pair of joined points. This restriction is not serious since the meaning
coordinated to the lines may be a summary of many observations. We also
note that directed lines may be more useful than symmetric lines since
it is not necessary that bonds or lines be in the same direction. Suppose
for example, that lines stand for the flow of information in a particular
direction. If information flows from z to y and from y to z, then information
flows from z to z via y. Such a multistep path indicates a possible channel
for communication.

A digraph is said to be strongly connected (or strong) if for every pair of
distinct points, = and y, there exists a directed path from z to y and one
from y to z. A digraph is said to be unilaterally connected (or unilateral)
if for every pair of points, z and y, there is a directed path from z to y
or one from y to z. A digraph is called disconnected if the points can
be divided into two sets with no line joining any point in one set with a
point in the other set. A digraph is called weakly connected (or weak) if
it is not disconnected. These connectedness definitions are inclusive since
every strong digraph is unilateral and every unilateral digraph is weak. We
use the term “digraph” and “group” interchangeably.

In order to distinguish between groups on the basis of the kind of
connectedness, we require exclusive connectedness categories. These may
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be obtained as follows. Let Uz be the collection of all strong digraphs.
We define Uy as the set of all unilateral digraphs. Similarly we define U as
the set of all weak digraphs. Finally, Uy is the collection of all disconnected
digraphs. Then U3 CU, CU and Uy NUg = 0. Let C3 = Uz, Cy =
Uz \ Us,Cy = Uy \ Uz, and Cy = Up. Clearly, any digraph belongs to
exactly one of the categories C3, Cs, C1, or Co.

In order to evaluate the effect of a point on the connectedness of its
digraph, we require a precise definition of the removal of a point of a di-
graph. If D is a digraph and z is a point in it, than D \ z is the digraph
obtained from D by deleting the point z and all lines which are either di-
rected toward z or away from x. We say z is a point of type P;; if the
digraph D (with = present) is in class C; but D\ = (with z absent) is in
class Cj. Since the four categories C3, C2, C1, and Cp are numbered in
accordance with the convention that the higher the subscript the stronger
the kind of connectedness of the digraph, we may utilize this convention to
describe and characterize which points are strengthening. Thus a point
of a digraph is a strengthening point if it is of type P;; such that ¢ > j; it
is a weakening point if i < j and the point is called neutral if ¢ = j. By
strengthening and weakening group members, we mean those individuals
coordinated with strengthening and weakening points of the digraph that
represents the structure of the group. Similarly, if a point is of the type
P;;, we speak of the corresponding individual as an (¢, j) member.

When we contrast D and D \ z, we assume that the lines between pairs
of distinct points exist independently.

Connectedness Criteria

We characterize strengthening and weakening group members. We first
show that there are no (1, 3) members in a group. We then introduce
the concept of the “reachability matrix” of a group. This matrix, R, is
useful for the expression of matrix conditions that characterize the inclusive
connectedness categories (i.e., strong, unilateral, weak, and disconnected).
A straightforward modification of these theorems leads to a description
of the exclusive connectedness categories C3, Ca,C1,Cp. We then obtain
conditions for each of the (z, j) types. We show that weakening members
may be identified from direct examination of the reachability matrix.

To illustrate all the possible types of (i, j) members that can occur,
we display the following digraphs in which the ordered pair written at
each point indicates its type. Whenever a line between two points of any
digraph of Figure 3.8 is drawn without any direction displayed, it stands
for two directed lines, one in each direction.

Example 3.16 All (i,j) members, except for (1,3), are possible.
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Theorem 3.28 There are no (1, 3) members in any group.

Proof. We assume that there exists a (1, 3) member z of group G, and
derive a contradiction. Here G is in class C; and G \ z is strong. But
when we join the point z to the group G \ z by at least one line, then the
original group G must be unilateral (i.e., is in either class C; or C3). This
contradicts the hypothesis that G is in class C;. B

Throughout the remainder of this section, D = (V, P) is digraph with
z1,Z2, .., &n the n members of V' or the group. Let the matrix M of the
group relationship be defined as follows: If z; has the relationship to z;,
the i,j entry of M equals 1; otherwise it is 0. We assume that all the
diagonal entries are 1. The relationship is not assumed to be symmetric,
but may be.

Let R denote the n x n matrix whose 2, j element is 1 if there is a directed
path from z; to z; and 0 otherwise. Then R is called the reachability matriz
of the digraph D. The diameter, d, of digraph D is the greatest distance
between any two points of D. A loop is a directed line which begins and
ends at the same point. Our convention that all the diagonal elements of
M are 1 is equivalent to the existence of a loop at every point.

A Boolean matriz is one in which all the elements are either 1 or 0.
The usual addition and multiplication operations of matrices are applied
to Boolean matrices by means of therule 1+1 = 1. Thus in Boolean terms,
any positive integer obtained by ordinary matrix operations is replaced by
a 1. If the sum or product is 0, it is entered in the matrix as 0. In this
section all matrices are Boolean, and all the operations are performed as
described above.

A redundant chain from y; to yy is a sequence of lines of the form y; —
Y2,Y2 — Y3, ...,Yk—1 — Yr where the points y; to y, are not all distinct.
By its constructive definition, the matrix M gives all the (directed) paths
of length 1 between distinct pairs of points. The matrix M contains all
these paths and also a path of length 1 from each point to itself. Thus each
point is reachable from itself. In addition, these loops permit the existence
of redundant chains from z to y of any length whenever paths from « to
y of shorter length occur. We now form the matrix M?2. In this matrix,
the number 1 occurs in the 7, j place if and only if there is either a path
or redundant chain of length 2 from point ¢ to point j. Continuing in this
manner, we eventually obtain the matrix M¢. Since d is the diameter of
the given digraph, there are no paths of length greater than d that connect
points not already connected. The presence of loops at each point assures us
that there will be a redundant chain of length d whenever there is a path of
any shorter length. Therefore this last matrix M¢ contains all reachability
relationships that occur in the digraph. Hence, R = M¢. Hence we have



116 3. APPLICATIONS OF FUZZY GRAPHS

FIGURE 3.8 Possible types of (i,j) members.
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the following theorem which gives a formula for the reachability matrix of
a group in terms of its relationship matrix.

Theorem 3.29 R = M¢, where d is the diameter of D.

Corollary 3.30 If k is any integer greater than d, then M* = R.

Proof. The diameter d is the smallest number m such that M™ = M™+1,
Hence for any integer k greater than d, the matrix M* is equal to M¢ which
we have already seen equals R. ll

Corollary 3.31 R=(I - M)~L.

Proof. By a well-known matrix identity, (I — M)~ = I + M + M? +
oo+ M4+ M4+ But the terms M? + M1 + . = M9 since we are
using Boolean addition. Also I + M + M2 + ... + M? = M¢. Hence
(I - M)~! = M4 = R by Theorem 3.29. We note that if N is the matrix
obtained from M by having 0’s on the diagonal, then R = (—N)~!.

Inclusive Connectedness Categories

The next four theorems serve to characterize the inclusive connectedness
categories. These are expressible in terms of the matrix W of the universal
relationship. Specifically, W is the n by n matrix in which every entry is
1.

Theorem 3.32 The group G is strong if and only if R=W.

Proof. The group G is strong if and only if for each member-pair z; and
z; there exists a path in both directions. However, this condition holds
if and only if for all values of i and j the i, j element of the matrix R is
equal to 1. However, 7 and j are arbitrary positive integers between 1 and
n. Therefore all the entries in R must be equal to 1 for the group to be
strong, i.e., R=W. 1

This result was also found in [29]. Let M’ denote the transpose of a
matrix M. Then R’ is the matrix of “reverse reachability” in the sense that
a 1 in the 4, j place of R’ means that z; is reachable from z;. The next
theorem uses the matrix R + R’. In this matrix, a 1 in the i, j place
means z; is reachable from z;, or z; is reachable from z;, or both (since
the addition of R and R’ is Boolean).

Theorem 3.33 The group G is unilateral if and only if R+ R' = W.
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TABLE 3.4 Weakening members.

Exclusive Class Criterion
Cs R=W
Cs R+R =W, R£W
o) R~ =W, R+R #W
Co R-#W

Proof. Let r;; and r;; denote the i, 7P element of R and R/, respectively.
Then G is unilateral < Vi, 5, 3 a directed path from either z; to z; or from
zjtoz; @ Vi,jrij=lorr; =1« R+R =W.1

In order to characterize weak groups, we introduce the digraph D~
obtained from D = (V,P) as follows: Let D~ = (V,P~), where P~
= PU{<y,z > | < z,y > € P}. This process may be called symmetriz-
ing the digraph D. Let M~and R~ be the relationship matrix and the
reachability matrix of D~ respectively. Then M~ =M + M.

Theorem 3.34 A group is weak if and only if R~ =W.

Proof. Clearly, D is weak if and only if D~ is strong. Therefore, by
Theorem 3.32, D is weak if and only if R==W.

Theorem 3.35 A group is disconnected if and only if R~ # W.

Proof. By definition, a group is disconnected if and only if it is not weak.
The desired result follows by Theorem 3.34.

Exzclusive Connectedness Categories

We now combine the last four theorems to characterize the exclusive cate-
gories C3, Co, Cy, and Cy.

Theorem 3.35 gives a criterion for a group G to be in Cy. However, for
G to be in C; the condition of Theorem 3.34 holds while that of Theorem
3.33 does not. Similarly, G is in Cs if and only if Theorem 3.33 holds
while Theorem 3.32 does not. Finally G is in Cj if and only if Theorem
3.32 holds. These observations are summarized in Table 3.4 which lists
the exclusive connectedness categories in one column and the respective
criteria in the other column.

The weakening members of a group can be described further. All the
possible kinds of weakening members are:
A. The (0, j) members for j =1,2, or 3
B. The (1, 2) members
C. The (2, 3) members
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This follows from Theorem 3.28 which asserts that there are no (1, 3)
members.

Let z € V. Then z is called an isolate if y € V \ {z} such that either
<z, y>€Por<yz>€P

Theorem 3.36 Let z; € V. Then x; is an isolate if and only if the only
nonzero element in the ith row and the ith column of R is the i, i (or

diagonal) entry. B

A symmetric matriz is one which remains unchanged when its rows and
columns are interchanged. It is well known that for any square matrix A,
the matrix A+ A’ is symmetric. Hence, in particular R+ R’ is symmetric.

In the following theorem, we give a characterization of all weakening
members.

Theorem 3.37 (1) For j =1,2, or3, z; is a (0, j) member if and only
if z; is an isolate and G\ z; is in Cj.

(2) z; is a (1, 2) member if and only if R+ R’ has at least one zero and
all its zeros occur in the ith row and in the ith column.

(3) z; is a (2, 3) member if and only if every element in R is a 1 except
in the ith row (or column) of R, where all but the diagonal element
are 0.

Proof. (1) If z; is an isolate and G\ z; is in C; then z; is a (0, j) member
by definition.

To prove the converse, let z; be a (0, j) member for 7 > 0 and assume
z; is not an isolate. Then G \ z; is still disconnected. Hence ; is a (0,
0) member which is a contradiction. Procedurally, (0, 7) members can be
identified by considering the condition met by the remainder of the matrices
R, R+ R, and R~ after the row and column belonging to an isolate are
deleted.

(2) If R+ R’ has at least one zero and all its zeros occur in the ith row
and in the %th column, then by Table 3.4, G is in Cjand G \ z; is in Cs.

To prove the converse, let z; be a (1, 2) member of G. Then G is in C)
so that R+ R’ must have at least one 0. Assume that there is a 0 which is
Deither in the ith row nor in the ith column or R+ R’. If z; is eliminated
from R + R, all 0’s not in the ith row or column would remain since the
elimination of a member and its bonds cannot add connections to members
of G. Therefore G \ z; would be in C}, a contradiction.

(3) Again the criteria of Table 3.4 show that under the stated conditions
Z; is a (2, 3) member.

Conversely, let z; be a given (2, 3) member. Then either z; can reach
all other members but no other members can reach z; or vice versa. In
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the first case all the elements in the ith row are 1 and all the nondiagonal
elements in the ith column are 0, while every element of R not in the ith
row or column is a 1. For the other case, we interchange the words “row”
and “column.” ll

Corollary 3.38 The group consisting of ezactly two isolates, i.e, ({z,y},0),
has two (0, 3) members. Any other disconnected group has at most one
weakening member. Bl

Corollary 3.39 A C) group has at most two (1, 2) members. B

The members r and z are (1,2) members in the following digraphs:

({z,y,2}.{(z, 9}, {z,9}}) and ({z,y, 2}, {(v, =}, {y. 2}})-

Corollary 3.40 A C, group has at most two (2, 3) members. B

The members z and y are (2, 3) members in the digraphs ({z,y}, {(z,y}}).

The following is probably the most startling result in this section. It must
be kept in mind that weakening members are defined in terms of the kinds
of connectedness introduced here.

Theorem 3.41 Any group has at most two weakening members.

Proof. This is an immediate consequence of three corollaries since the
possibilities there listed are exhaustive and mutually exclusive. ll
Unfortunately there do not appear to be analogous theorems describing
the strengthening members of a group. However, we can still identify these
strengthening members by using the results of Table 3.4 on the given group
G and on G\ z. In particular, the strengthening members in classes (7, 0)
for p=1,2, or 3 correspond to the liaison persons [32] of the symmetrized

group.

3.7 An Application to the Problem Concerning
Group Structure

The results of this section are from [37]. A fuzzy directed graph is utilized to
characterize the role played by an individual member in such a group that
a class of group members having relationship with any given member has
no sharply defined boundary. The concepts of weakening and strengthening
points of an ordinary graph presented in the previous section and by Ross
and Harary, [33], are generalized to those of a fuzzy directed graph.
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The theory of graphs is one of the most important tools in the study of
the group structure. Recall that a strengthening member of the group is
one whose presence causes the graph corresponding to the group to be more
highly connected than that obtained when he is absent, while a weakening
member is one whose presence causes the graph to belong to a weaker
category of connectedness. Besides this, the graph has been widely utilized
to study the problems concerning redundancies, liaison persons, cliques,
structural balance and so forth.

In many cases, however, the mere presence or absence of a relation is
not adequate 'to represent a given group structure. There may be different
strengths of the relations between individuals. There may even be situations
in which it is fuzzy rather than well-defined whether or not an arbitrary
individual has relationship with a given member, that is, a class of group
members being in relationship with any given member does not have a
sharply defined boundary. In such cases, an ordinary graph may not fully
represent the group structure. Instead, the fuzzy graph seems to be a
more relevant mathematical model.

Connectedness of a Fuzzy Graph

Definition 3.13 Let V be a finite set of points and let I" be a function of
V into the set of all fuzzy subsets of V, Fp(V). Then G(V,T) is called a
fuzzy directed graph.

Let I'; denote I'(z), for all z € V. For z,y € V, we can think of I',(y) as
the strength of the directed line from z to y. If for all z, y € V, I'z(y) is
either 0 or 1, then G reduces to an ordinary directed graph.

In order to evaluate the effect of the removal of a point on the connect-
edness of its fuzzy directed graph, we introduce the following definition.

Definition 3.14 A fuzzy directed subgraph of G = (V,T') is defined to be
a fuzzy directed graph of the form (Y,I"), where Y is a subset of V and the
function TV is defined as

[,=TylyforanyyeY.

Definition 3.15 For a fuzzy subset p of V, two fuzzy subsets [, andT;!
are defined by Vz €V,

{ Lu(z) = V{u(y) ATy(z) |y € V}
L2 (z) = V{py) AT=(y) |y € V}

respectively.
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Proposition 3.42 Let p and v be two fuzzy subsets of V. Then,
(1) T,CT, ifpCuv,
(2) T;' ST  ifuC,
(3) Tpurv CTuNTy,
(4) Tuhe ST NI,
(5) Tuuw =T, UL,
(6) Tpb =T UL,

Proof. Properties (1) and (2) are obvious from definition of I, and
[,!. Properties (3) and (4) directly follow from (1) and (2), respectively.
For property (5), we have T'yu,(z:) = V{(u(z)V v(z)) ATy(z) |y € V} =
(V{r(@) ATy(z) |y € V} V (V{u(z) ATy(z) |y € V}) = Tu(z) VL (2) =
T uUl)(x).

The property (6) is shown in the same way as (5).

Let G = (V,T) be a fuzzy directed graph. If we were to write I'(z,y)
for I';(y) for all z,y € V, then we could consider I" as a fuzzy subset of
V x V, that is, a fuzzy relation on V. With this interpretation we have the
following definition.

Definition 3.16 Let G = (V,T) be a fuzzy directed graph. Let T=! be the
fuzzy subset of V x V defined by T~ (y,z) = [(z,y) ¥(z,y) €V x V . Let
A be the fuzzy subset of V x V defined by A =T UTl'"!. LetT', I'~! and A
denote the transitive closures of I', T~! and A, respectively.

If A and B are functions of V into Fp(V), then we define the function
AUB of V into Fp(V) by Vz € V,(AU B)(z) = A(x) U B(z). Then
Vz,y € V,((AU B)(z))(y) = A(z)(y) V B(z)(y). It is now easy to see that
VzeV,

[, =rur,ur(u...urz! (3.4)

and
o'=rdur;tur;?u..ur;™! forzeV,

where Vz,y € V,T{(z,y) =0if z #y and T(z,9) =1 if z = y.

The grades of membership I'z(y) and I';'(z) may be interpreted as the
degree of the existence of a directed path from z to y and that from y to
z, respectively. Similarly, we have Vz € V,
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=A%uA,uAZy...uAart (3.5)

The value of A.(y) may be interpreted as the degree for two points
r and y to be joined by a semipath, that is, an alternating sequence
20, €0+ V1, - - - » €n, Un Of vertices v;_; and directed edges e;, where each edge
e; may be either < v;_j,v; > or < v, v >

Definition 3.17 The grades of membership of a fuzzy directed graph G =
(V,T) in U3, Uz, U1, and Ug are defined by

puy(G) = A{Tai(zy) 4,5 =1,...,n},

ry,(G) = /\{rr.(% )V rz, (z:) |1.7—1 1}
po,(G) = A{ As(z)|i,5=1,....,n},
pu,(G)=1- A{ A:,(x_,)|z ]—1 coym}y

respectively.

It follows that

153 (G) < s, (G) < iy, (G) for any G = (V,T). (36)

Specifically, we can see that for any digraph G in C;, py;, (G) = 0 for
327 >4 py(G)=1fori2j 21, wherewerecallthatC3—U3,Cg—
Uz \Us,Cy = Uy \ Uz and Co = Up.

We now present two simple examples. Let V = {z,y, z} and I';(y) = 0.5,

z,,(:c:)—O L2(z) =0, T.(z) =0, Iy(z) = 0 and T:(y) = 0.25. Then

Pe(y) =05, Dy(z) =0, [2(z) = 0, Fo(z) = 0, Ty (z) = 0 and . (y) = 0.25.
Hence py, (G) =0, py,(G) =0, and py, (G) = O 25. Note that G = (V,T)
is in CI,

Now let V = {z,y, 2} and I be defined as before except that I';(z) = 0.25
and ', (y) = 0. Then [ is as above except that I';(z) = 0.25, Fy(z) 0.25,
and I,(y) = 0. We have that G = (V,I) is in C; and that p; (G) =
0, u, (G) = 0.25, and py, (G) = 0.25.

Weakening and Strengthening Points of a Fuzzy Directed Graph

In this section, we define weakening and strengthening points of a fuzzy
directed graph as a natural extension of those of an ordinary digraph. We
then investigate their fundamental properties.

Definition 3.18 For a fuzzy directed graph G = (V,T), let Gy be the fuzzy
directed subgraph (V' \ {z+},I"”) obtained from G by the removal of a point
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FIGURE 3.9 A point of the type (W), Sa, N3).
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zi. Then, the point xi is a weakening point for U; (a W; point, for short)
if py,(G) < py,(Gr); it is a neutral point for U; (an Nj point) if py (G)

= py,(Gk); and it is a strengthening point for U; (an S; point) if py, (G) >
by, (Gk), wherei=1,2,3.

For instance, a point i, as shown in Figure 3.9, is a weakening point for
U; because the grade of membership in U; of the fuzzy directed subgraph
Gy, is greater than that of G. In the similar way, it is also an S5 point and
an N3 point, so we say z; is a point of the type (W, Sz, N3).

In what follows, for brevity of notation, let

pij =Fz(z5), i, 5=12,...,n,

3.7)
gij = Azy(z5), i, 5=1,2,...,m, (3.8)

and
rij =00 (z;), i, j#k 4, j=12..,n, (3.9)

where I and A are respectively as defined in (3.4) and (3.5), and I is the
transitive closure of I'.

Let P and @ denote respectively n x n matrices with elements p;;
and g;; and let R be an n x n matrix, whose elements in the k-th row
and in the k-th column are zeros and each (i, j) element is r;;, where
i, j#k i, 5=12,...n

The next lemma serves to characterize weakening points for each con-
nectedness category.
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Lemma 3.43 (1) A point z;. is a W3 point if and only if the elements
of P which are equal to py;, (G) are all in the k-th row or in the k-th
column of P.

(2) A point Ty 15 a W, point if and only if any (i, j) elements of P such
that pi; V pji = py,(G) are in the k-th row and in the k-th column of
P.

(3) A point zx is a Wy point if and only if all the elements of Q which
are equal to py, (G) are in the k-th row and in the k-th column of Q.

Proof. (1) Let zx be a W3 point. Suppose that there exists an element,
say an ([, m) element, [, m # k, which is equal to u;, (G). Since

Tij Spij, is .7 75 k, iv .7 = 172: - N,
we have

ILU3(Gk) = /\{Tij | 'iv .7 = 1,2,...,77.,‘i #k#J} Splm =/"'U3(G)1

which contradicts the assumption that z; is a W3 point. Therefore, every
element of P which is equal to uy, (G) is in the k-th row or in the k-th
column of P.

Conversely, assume that the elements of P which are equal to pg,(G)
are all in the k-th row or in the k-th column of P. First, notice that if
an element which is equal to y, (G) is in the k-th row (column) of P,
then every non-diagonal element in the k-th row (column) of P is equal to
#u,(G). Hence

p‘ik/\pk_‘i =,uU3(G) <pij7 i: ]#k;l, j=112a"':nv
which yields

Tij = Pij > “Ug(G)’ i, 36 k; i, j= 1s23~-°)n-

Therefore

/‘Us(Gk) = A {rij I 1:, .7 = 172: s ,’I’l,'i ?é k #]} > “Ua(G)r
so that z is a W3 point, which completes the proof of (i).
The proofs of (ii) and (iii) are similar to that of (i). I
The following theorem is an immediate consequence of Lemma 3.43.

Theorem 3.44 There exist at most two W; points in any fuzzy directed
graph, wherei = 1,2,3.  Further, any fuzzy directed graph with n (n > 3)
points has at most one W, (W3) point. B
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Before proving the following lemma, we recall that an oriented graph is a
digraph having no symmetric pair of directed lines and a tournament is an
oriented complete graph. A Hamiltonian path in a digraph D is a spanning
path in D.

Lemma 3.45 For any fuzzy directed graph G = (V,I'), there ezists a path
{zi,, Tiy, ..., Ti, } (s = n) such that:

(1) every point of V' appears in the path;
(2) Iz, (Ziy,) 2 8y, (G), 1=1,2,..,5s-1

Proof. The result is trivial if u;;,(G) = 0. Hence we assume py;, (G) >
0. Let us construct an ordinary digraph G’ = (V,I'”) from G as follows:
Fori, 7=1,2,...,n,

w1 ifpi; > py,(G),
Iz (z;) = { 0 ifpy< /w:(G)'

Since p;;V pji > py,(G), G includes a tournament as a partial graph of
G. Since every tournament has a Hamiltonian path, G has a Hamiltonian
path. On the other hand, we can easily see from Definition 3.16 that if
Pij > py,(G), then there exists at least a path {z;,z, ..., Ty, ;} such that

in(xu) > I"UQ(G)’

Fzu(z3) 2 p,(G)

The following theorem shows that in any fuzzy graph with n (n > 2)
points, it is impossible for all points to be strengthening ones for Uz (Uh)-

Theorem 3.46 In any fuzzy directed graph G with n (n > 2) points, there
exist at least two points which are either weakening or neutral ones for Uz

(Uy)-

Proof. Let a path {z;,,zi,,...,z;,} satisfy (1) and (2) of Lemma 3.45.
Without loss of generality, we can assume that the initial and final points
z;, and z;, appear exactly once in the path. For, if the initial point (the
final point) appears more than once in the path, we can delete the first
point ( the last point ) of the path, so that the remaining path also meets
the requirements (1) and (2).



3.7 An Application to the Problem Concerning Group Structure 127

Now, according to the above assumption, a path {z;,, z;,, ..., z;, } and
a path {z:,, Zi,, ..., Ti,_, } contain respectively all points in V \ {z;,} and
all points in V' \ {z;,}. Therefore

Ky, (Gil ) 2 Hy, (G)7
and

Hu,(Gi,) 2 py, (G).

Thus, each of r;, and z;, is either a W or Ny point, which completes
the proof for Us. The proof for U; is similar.

Corollary 3.47 Any fuzzy directed graph with n (n > 3) points has at
least one N point.

Proof. It is an immediate consequence of Theorems 3.44 and 3.46. B

Theorem 3.48 If a fuzzy directed graph G with n (n > 3) points has two
Wy points, then

By, (G) < py, (G).
Proof. Let z; and z; be W, points, i.e.,

b, (Gk) > py, (G), (3.10)
and

By, (Gr) > By, (G).
Suppose that

v, (G) = py, (G). (3.11)

From (3.6) and (3.10) through (3.11), we find that by, (G) < py,(Gk) <
ty, (Gk) and py, (G) < py,(Gi) < by, (Gi). Thus zx and z; must be W,
points, which contradicts Theorem 3.44. Hence by, (G) < py, (G). 1

Theorem 3.49 Any W3 point is either a W, one or an Ny one.

Proof. Let z be a W3 point. From the proof of Lemma 3.43, we get

1'1'1' = p,-_.,-, i, ] = 1,2, ey N
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Therefore,

By, (Gk) 2 py, (G).

|
The following theorem directly follows from Definition 3.18 and (3.6).

Theorem 3.50 If py,(G) = py,(G) for some i < j, then an S; point is
also an S; point. B

Theorem 3.51 If py (G) = py,(G) for some i > j, then a W; point is
also a W, point, where 1 <1 <.

Proof. Let i =3 and j =1, i.e.,

pHy,(G) = Hy, (G). (3.12)
Let z; be a W3 point. From (3.6) and (3.12) we obtain, uy,(Gr) <
Ky, (Gk) and py (G) = py, (G) = py,(Gk). Thus

By, (Gk) > py,(G),

and

ru, (Ge) > py, (G)-

Thus, xx is a W, point, where 1 <1 < 3.
Next, assume that zy is a W> point and that up, (G) = py, (G). It
follows that

ty, (Ge) > py, (G)-

Thus, z is a W, point, where 1 <! < 2.

Finally, we shall prove that if z; is a W3 point and p, (G) = uy,(G)
then it is a W) point, where 1 < [ < 3. Since it is obvious that z\ is a
W, point, it suffices to show that z is a W, point. Using Lemma 3.43, it
follows that both in the k-th and in the k-th column of p there exists an
element which is equal to u;, (G). Hence we get from the proof of Lemma
3.43

Prj =DPjk = My, (G), J#k i=12,..,n
Thus we have

ka Ur;}‘l(xﬁ)) < I‘LU:Q(G)1 .7 # k: .7 = 1:27 M
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which yields

ak; = @k S pp(G), #K §=1,2,m.

Therefore we get
py, (G) = py,(G),
so that
vy, (Gk) > py, (G).
[ |

Theorem 3.52 Let zx be a W; point. If py, (Gx) = py,(Gk) for some
i < j, then =i is also a W, point, where 1 <1 < j.

Proof. The proof of this theorem is similar to that of Theorem 3.51. B

In closing, we shall show how results of Ross and Harary can be ob-
tained from our results as the special cases. First, note that, in the case
of the ordinary digraph G¢, py, (G§) > py;,(G?) if and only if py (GE) =1
and py; (G?%) =0, that is, Gf € U; and G? ¢ U;. With the understanding
that a weakening point for Up is one whose presence makes its fuzzy graph
more highly disconnected than it would be without the point, the W point
is defined to be the W) point. We can easily see from Theorem 3.44 that
any digraph has at most two weakening points. And, from Theorem 3.51,
we can find that there are no (1,3) points in any digraph.
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4
FUZZY HYPERGRAPHS

Graph theory has found many application area in science, engineering, and
mathematics. In order to expand the application base, the notion of a graph
was generalized to that of a hypergraph, that is, a set X of vertices together
with a collection of subsets of X. In this chapter, we fuzzify the notion of
a hypergraph and state some possible applications. The results are taken
from [9,10,11,12,22].

The degrees of membership in an edge may vary; this feature is essen-
tial in the latter part of this section where fuzzy hypergraphs are used to
interpret ideas of Hebb on cortical development.

4.1 Fuzzy Hypergraphs

A (crisp) hypergraph on a set X is a pair H = (X,E) where X is a finite
set and E is a finite family of nonempty subsets of X such that Vz €
X,3F € E such that € E. We call X the verter set and E the edge
set of H. Repeated or multiple edges are allowed. We use E and H
Interchangeably to designate a hypergraph with the understanding that if
only the edge set E is specified, then X = U{E | E € E}. A hypergraph
H = (X,E) is called simple if E contains no repeated edges and whenever
E,F €E and E C F, then E = F. We sometimes denote the vertex set of
H by V(H).
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Definition 4.1 Let X be a finite set and let £ be a finite family of non-
trivial fuzzy subsets of X such that

X =“|éJ£ supp(u)- (4.1)

The pair H = (X,£) is called a fuzzy hypergraph (on X ) and £ is called
the edge set of H which is sometimes denoted E(H). The members of £
are called the fuzzy edges of H. The height of M, h(H), is defined by h(H)
=V {h(p) | p € £}, where we recall that h(p) denotes the height of .

We use £ and ‘H interchangeably to designate a fuzzy hypergraph with
the understanding that the vertex set X always satisfies (4.1).

Definition 4.2 A fuzzy hypergraph H = (X, &) is called simple if £ has
no repeated fuzzy edges and whenever u,v € £ and p C v, then p=v.

Definition 4.3 A fuzzy hypergraph H = (X, ) is called support simple,
if, whenever u,v € £, p C v and supp(p) = supp(v), then p = v.

Definition 4.4 Let ¢ € Fp(X). If |o(supp(o))| = 1, then o is called
elementary on X. If o is elementary on X, we sometimes write o(A,T)
where A = supp(c) and r = h(o) is the constant value assumed by o on
A. If |supp(c)| = 1, ¢ is called a spike. An elementary fuzzy hypergraph
H = (X,€) is a fuzzy hypergraph where all fuzzy edges are elementary.

Definition 4.5 Let H = (X,€) be a fuzzy hypergraph. Suppose that t €
[0,1]. Let

E'={u#0|pe€&}and X‘:ng,u‘. (4.2)
n
If E' # 0, then the (crisp) hypergraph

H = (X*,E) (4.3)
is the t-level hypergraph of H.

Clearly, it is possible that u* = v* for u # v; by using distinct markers
to identify the various members of £ a distinction between uf and v* to
represent multiple edges in H*. However, we do not take this approach;
unless otherwise stated, we will always regard H® as having no repeated
edges.

The families of crisp sets (hypergraphs) produced by the t-cuts of a fuzzy
hypergraph share an important relationship with each other, as expressed
below. Suppose A and B are two families of sets such that for each set A
belonging to A there is at least one set B belonging to B which contains A.
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In this case we say B absorbs A and symbolically write AC B to express
this relationship between A and B. Since it is possible for A C B while
AN B =0, we have that A C B = A C B, whereas the converse is generally
false. If AC B and A # B, then we write A C B.

Definition 4.6 Let H = (X,£) be a fuzzy hypergraph, and for 0 < t <
h(H), let Ht = (X*,E") be the t-level hypergraph of H. The sequence of
real numbers {r1,72,...,7n}, 0 <1y < --- <7y = h(H), which satisfies the
properties

(1) if ri;1 < s <y, then E* = E™, and
(2) E CE™,

is called the fundamental sequence of H, and is denoted by F(H) and the
set of r;-level hypergraphs {H™, H™,... ,H™} is called the set of core
hypergraphs of H or, simply, the core set of H, and is denoted by C(H).

If 1 < s <1 in Definition 4.6, then E® = {#} and H® does not exist.
For simplicity, whenever there is no confusion, we shall use H; to denote
the r;-level hypergraph H™. Further, X; and E; shall usually denote the
vertex and edge set of the core hypergraph H™. Thus, H™ = (X" ,E™) =
H,; = (Xi,E.,'),’l: = l, P (N

Definition 4.7 Suppose H = (X,€) is a fuzzy hypergraph and F(H) =
{r1,72,..., mn}. Then H is called sectionally elementary if for each pu € €
and each r; € F(H), pt = p™ for allt € (ri41, 7i). (We assume rpyq =0.)

Definition 4.8 Suppose H = (X,E) and H' = (X',E’) are (crisp) hyper-
graphs. H 1is called a partial hypergraph of H' if E C E'. If H is a partial
hypergraph of H', we write H C H'. If H C H' and E C E', we write
HcCH'.

Definition 4.9 Suppose H = (X,£) and H' = (X',E') are fuzzy hyper-
graphs. 'H is called a partial fuzzy hypergraph of H' if E CE . If H is a
partial hypergraph of H', we write H C H'. If H C H’ and £ C E’, we write
HcH.

We now illustrate some of the above definitions.
Example 4.1 Consider the fuzzy hypergraph H = (X,£), where X =

{a, b,c,d} and € = {p,, po, 13, Ky, K5}, which is represented by the following
ncidence matriz:
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K1 M2 H3 Mg M5
07 09 0 0 04
07 09 09 07 O

0 0 09 07 04

0 04 0 04 04
From this matriz we understand, for ezample, that 1y : X — [0, 1] satisfies
po(a) = 0.9, pa(b) =09, po(c) =0, po(d) =0.4. Clearly h(H) = 0.9 and
sory =0.9. Now

EO.9 — {{a,b}, {b, c}} — E0.7
and

E%* = {{a,b}, {a,b,d}, {b,c}, {b,c,d}, {a,c,d}}.
Thus for 0.4 < t < 0.9,E* = {{a,b}, {b,c}} and for 0 < t < 04,E! =
{{a,b}, {a,b,d}, {b,c}, {b,c,d}, {a,c,d}}. Further note that E®° C E*4
and E%9 # EO%4. Therefore the fundamental sequence is F(H) = {r; = 0.9,
r9 = 0.4} and the set of core hypergrahs is C(H) = {H; = (X1, E;) = H®9,
Hp = (X2,Eg) = H%*} where

a o oe

X1 = {a,b, C},
= {{a) b}1 {b’c}}’
X2 ={a,b,c,d}
and

E; = {{a,b}, {a,b,d}, {b,c}, {b,c,d}, {a,c,d}}.
M is support simple, but not simple. Since (u,)t # (1,)%°, for t = 0.7,
‘H is not sectionally elementary. The following partial fuzzy hypergraphs
of H illustrate several of the above definitions: £ = {ug, U3, B4, Hs}
is simple; £" = {puy, p3, ps} s sectionally elementary, but not elemen-
tary and £" = {u,, p3, ps} is elementary. For £, we have (E")%9 =
{{b,c}}, (B™)°7 = {{a,b}, {b,c}} and (E)0% = {{a,b},{b,c}, {a,c,d}).

Hence the corresponding fundamental sequence s 0.9,0.7,0.4.

Definition 4.10 A sequence of crisp hypergraphs H; = (X;,E;), 1 <i <
n, is said to be ordered if Hy C Hy C --- C H,. The sequence {H; |
1 < i < n} is said to be simply ordered if it is ordered, and if whenever
Ee Ei+1 \E,‘, then E g_ X;.

Definition 4.11 A fuzzy hypergraph H is said to be ordered if C(H) is
ordered. That is, if C(H) = {H™, H"™,... H™}, then H" C H™ C --- C
H™ . The fuzzy hypergraph H is said to be simply ordered if C(H) is simply
ordered.

We note that the fuzzy hypergraph H given in Example 4.1 is simply
ordered.
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Proposition 4.1 IfH = (X, ) is an elementary fuzzy hypergraph, then H
is ordered. Also, if H = (X, £) is an ordered fuzzy hypergraph with C(H) =
(H™, H™,.. H™} and if H™ is simple, then H is elementary. W

Consider the situation where the vertex set of a crisp hypergraph is
fuzzified. Suppose that each edge is given a uniform degree of membership
consistent with the weakest vertex of the edge. Such constructions describe
the following subclass of fuzzy hypergraphs.

Definition 4.12 A fuzzy hypergraph H = (X,€) is called a p tempered
fuzzy hypergraph of H if there is a crisp hypergraph H = (X,E) and a
fuzzy subset p: X — (0,1] such that £ = {vg | E € E}, where
_ [ A{uy)lyeE} ifz€E,
ve(r) = 0 otherwise.
We let 4 @ H denote the p tempered fuzzy hypergraph of H determined by
the crisp hypergraph H = (X,E) and the fuzzy subset u: X — (0,1].

Example 4.2 Consider the fuzzy hypergraph H = (X,£), where X =
{a,b.c,d} and & = {uy, po, 43, b4}, which is represented by the following
incidence matric:
M K2 M3 Ky
a 07 0 0 07
b 07 04 09 O
c

0 0 09 07
d 0 04 0 O
Then
E%® = {{b,c}},
E%" = {{a,b},{a,c}, {b,c}}
and

E% = {{q,b},{a,c}, {b,c}, {b,d}}.

Define p : X — (0,1] by u(a) = 0.7,u(b) = p(c) = 0.9 and p(d) =
0.4 Note that viasy(a) = u(a) A u(b) = 0.T,u(apy(b) = p(a) A () =
0.7,v(a4}(c) = 0 and Viab}(d) = 0. Thus py = viqp). Also pp = vipay,
K3 = V(b,c}, g = V{a,c}- Thus H is p tempered.

The fuzzy hypergraphs 1 ® H can be characterized as follows (under the
restriction that H has no repeated edges).

Theorem 4.2 A fuzzy hypergraph H = (X, £) is a p tempered fuzzy hyper-
mph of some crisp hypergraph H if and only if H is elementary, support
simple and simply ordered.

Proof. Suppose H = (X,€) is a p tempered fuzzy hypergraph of some
crisp hypergraph H. Clearly, H is elementary and support simple. We
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show that  is simply ordered. Let C(H) = {H™ = (X1,E;), H™ =
(X2,E2),...,H™ = (Xn,Ey)}. Since H is elementary, it follows from
Proposition 4.1 that H is ordered. To show that H is simply ordered,
suppose there exists E € E;;1\ E;. Then there exists z* € E such that
p(z*) = rip1. Since p(z*) = ri4q < 7, it follows that z* ¢ X; and E € X;;
hence, H is simply ordered.

Conversely, suppose H = (X, £) is elementary, support simple and sim-
ply ordered. Given C(H) as above where it is understood that F(H) =
{r1,...,Tn} with 0 < 7, < ---7;. Recall that H™ = H, = (Xn,E;) and
define 1 : X, — (0,1] by

] if z€e X,
HE) =9 r i zeX \ Xiey,i=2.3,...,n.
We show that £ = {vg | E € E,}, where
NMu(e) le€e E ifz € E,

ve(z) = 0{ ©1 } otherwise.

Let E € E,,. Since H is elementary and support simple there is a unique
fuzzy edge wg in £ having support E. Indeed, distinct edges in £ must have
distinct supports that lie in E,,. Thus, to show that £ = {vg | E € E, },
it suffices to show that for each F € E,,,vg = wE.

As all edges are elementary and different edges have different supports,
it follows from the definition of the fundamental sequence that h(wg) is
equal to some member 7; of F(H). Consequently, E C X;. Moreover, if
i>1, then E € E; \ E;_;.

Since E C X;, it follows from the definition of x that for each = € E,
u(zx) 2 i

We claim that p(z) = r; for some z € E. For if not, then, by definition
of p, pu(x) > ri— for all z € E which implies that £ C X;_jand so E €
E; \ E;_; and since H is simply ordered E € X;_,, a contradiction. Thus
it follows from the definition of vg that vg = we. B

Corollary 4.3 Suppose H = (X,£) is a simply ordered fuzzy hypergraph
and F(H) = {r1, ro,..., rn}. If H™ is a simple hypergraph, then there
is a partial fuzzy hypergraph H' = (X,€’) of H such that the following
assertions hold.

(1) H' is a p tempered fuzzy hypergraph of H,.

(8) ECE'; that is, Vv € £, € €' such that v C V.

(3) F(H') = F(H) and C(H') = C(H).
Proof. By Proposition 4.1, it follows that H is an elementary fuzzy hyper-
graph. By removing all edges of H that are properly contained in another

edge of H, we obtain the partial fuzzy hypergraph H’' = (X, £’) of H, where
E'={pef|ifpCrvandvefE, thenv=ypu}
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Since H" is simple and all edges are elementary, one edge cannot contain
another edge in H unless both have the same support. Hence (3) holds. In
addition, H’ is support simple. Thus H'satisfies all conditions in Theorem
4.2 and (1) is seen to hold. B

4.2 Fuzzy Transversals of Fuzzy Hypergraphs

Let H = (X,E) represent a (crisp) hypergraph on X. A transversal of H
is any subset T of X with the property that TN E # (@ for each E € E.
A transversal T of the hypergraph H is called a minimal transversal of H
if no proper subset of T is a transversal of H. Clearly every transversal
contains a minimal transversal. The collection of minimal transversals of
H = (X,E) forms the edge set of a hypergraph, denoted by Tr(H), in
which the vertex set is a (possibly proper) subset of X.

Conceivably, a fuzzy transversal of a fuzzy hypergraph H over X could
simply be defined as a fuzzy subset of X that “intersects” every fuzzy
edge of H. However, such a definition would not permit the existence of
minimal fuzzy transversals (unless the interval of fuzzy membership values
was discretized), nor (more importantly) would there necessarily be a useful
association with the core set of crisp hypergraphs of H. Both concerns are
answered in the following definition.

Definition 4.13 Let H = (X, &) be a fuzzy hypergraph. A fuzzy transver-
sal T of H is a fuzzy subset of X with the property that T"(#) N ph(s) £ ¢
for each pu € £, where h(y) is the height of u. A minimal fuzzy transversal
T for H is a transversal of H with the property that if p C 7, then p is not
a fuzzy transversal of H.

We let T'r(H) denote the family of minimal fuzzy transversals of H.

Proposition 4.4 If 7 is a fuzzy transversal of a fuzzy hypergraph H =
(X,&), then h(T) > h(p) for each u € E. Moreover, if T is a minimal fuzzy
transversal of H, then h(7) = V{h(u) | p € £} = h(H).

The proof of the next result follows from Definition 4.13.
Theorem 4.5 If H is a fuzzy hypergraph then Tr(H) # 0. B

Proposition 4.6 Let H = (X,£) be a fuzzy hypergraph. The following
two statements are equivalent:

(1) 7 is a fuzzy transversal of H.
(2) For each € £ and each t, 0 < t < h(u), Tt N ut # 0.
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If the t-cut T* is a subset of the vertez set of H* for eacht, 0 < t < h(H),
then the following statement (3) is equivalent to (1) or (2).

(3) For each t, 0 <t < h(H), * is a transversal of H*.

(4) Every fuzzy transversal of H contains a fuzzy transversal that satisfies
statement (3). B

Clearly, property (3) in Proposition 4.6 is valid for each 7 € Tr(H). But,
it does not necessarily follow that if 7 is a minimal fuzzy transversal of
H, then 7% must belong to Tr(H*) for every t satisfying 0 < t < h(H).
However, it is interesting to identify those cases where all ¢t-cuts of 7 do
belong to Tr(H*). Let Tr*(H) represent the collection of those minimal
fuzzy transversals, 7, of H where 7¢ is a minimal transversal of H* for every
t satisfying 0 < t < h(H). In other words,

Tr*(H) = {7 € Tr(H) | h(r) = h(H) and 7* € Tr(H") for every t sat-
isfying 0 < t < h(H)}. The members of Tr*(H) are called locally minimal
fuzzy transversals of H. Clearly, Tr*(H) C Tr(H); however, the converse
of this statement is not generally valid as later examples will show.

The members of Tr(H) (or Tr*(H)) can be determined by Algorithm
4.1 (or Algorithm 4.2) below. Justification of the procedure depends upon
several properties stated in Lemma 4.10 which are shared by all members
of Tr(H) (or Tr*(H)).

To determine T'r(H), Algorithm 4.1 utilizes a procedure that appears in
(2, pp-52 - 53], which can be used to determine 7T'r(H) for any crisp hyper-
graph H. In order to execute the following algorithm, we use the following
notation: Let H; = (X;,E;), i = 1, 2, be a pair of (crisp) hypergraphs.
Then H, U H; denotes the hypergraph with edge set E; U E,.

In the following algorithms assume H = (X,€) is a fuzzy hypergraph
where F(H) = {r1, r2,...,mp} withry > 7m0 > -+ > 7, > 0and C(H) =
{H™ |r; e F(H)}.

Algorithm 4.1.
Step 1: Determine T'r(H™).
Assume
Tr(H™) = {T} |i' =1,...,m}.
For each i =1, 2,...,m; proceed to
Step 2('): Determine Tr(H™ U {{z;} | z; € TA}).
Note that {{z;} | z; € T} } is interpreted in Step 2(i!) as a crisp hyper-
graph. Assume
Tr(H U{{z;} |z, €TAY) ={T3 2 | =1,...,m} }.
For eachi2 =1,...,m} proceed to
Step 3(i!,12): Execute Step 3 in a manner consistent with the process
described in Step 2. Then continue recursively terminating with Step

.....
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- . ;1 n—1
Tr(H™U{z} 25 € TRl oD = ATR i [* =1, mp ™

.....

S, i = {ThATE o € Tr(H™ Uf{z;} | 2; € TE?ul) |k =

Loy
> froﬁl yhich we form a unique fuzzy subset

pihiteit = U{U(Tﬁ'._qimrk) |k=1,...,n}

Recall that o(A, ) denotes an elementary fuzzy subset with support A
and height 7. Then,

Tr(H) = {ri & |l e {1,...,m},..., " € {1,...,mi " 1}

Algorithm 4.2.
Step 1: Compute {Tr(H™) |k=1,..., n}.
Step 2: Determine the family £ of all possible nested sequences:
L={s={T3.....,T¢,.... T3} | T{ € Tr(H™), and T{ C T, ,, for
k=1,...,n—1}.
Step 3: To every s € L correspond the unique fuzzy subset:
° =U{o(T,m) | k=1,...,n}.
Then
Tr*(H)={r%|s € L}. )

It appears that Algorithm 4.2 is easier to execute than Algorithm 4.1;
but, as latter examples will show, sometimes T'r*(H) C T'r(H) and some-
times T7*(H) = 0.

If H is replaced with H* in Algorithm 4.1, it is possible to ease the
execution of the algorithm since H* is simpler. Recall that H* is.developed
in Construction 4.2 and that Tr(H®) = Tr(H).

Algorithm 4.1 clearly affirms the existence of Tr(H) for every fuzzy hy-
pergraph H. The same is not always true for 7r*(H) as the next example
demonstrates.

Example 4.3 Define H by the following incidence matriz.

My Mo U3
a 0.9 0 04
b 04 04 04 |.
c 0 0 04

Clearly T given by

b (03 ) i the only clement of Tr(20)

Since {b} is the only minimal transversal of the .4-cut, {{a, b}, {b},{a,b,c}},
of M it follows that the minimal fuzzy transversal, T, is not a member of

Tr*(H). Hence Tr*(H) = 0.

We now consider two basic questions:
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(i) When is Tr*(H) # 07
(ii) When is Tr*(H) = Tr(H)?
We give partial answers to both questions and begin our investigation
with a few preliminary results about crisp hypergraphs.

Lemma 4.7 Suppose H = (X,E) is a (crisp) partial hypergraph of a
(crisp) hypergraph H = (X, E).

(1) If T is a minimal transversal of H, then there exists a minimal
transversal T of H such that TCT.

(2) If H and H are simply ordered, and if T' is minimal transversal of
H, then there exists a minimal transversal T of H such that T CcT.

Proof. (1) Let S =TNX. Then S is a transversal of H. Clearly, there
exists a minimal transversal 7' of H such that T cCSCT.

(2) Let E* = {E| Ec E\E and ENT = ¢}. If E* = 0, then T
is also a minimal transversal of H, and we are done. Suppose that E* =
{E\ Es,...,Ex}. Since H and H are simply ordered, there exists a vertex
z; € Ei\X, for each integer 1,1 <7 < k.Let S = TU{xl,xg, ..., Zk}. Then
S is a transversal of H and contains a minimal transversal T, which must
contain 7. W

There are examples where the pair (H, H) is ordered and the conclusion
in Lemma 4.7(2) is false, so a condition stronger than “ordering” was needed
in (2).

Theorem 4.8 Suppose H = (X,€) is an ordered fuzzy hypergraph with
F(H)={r,r2,...,mn} and C(H) = {H™ | r; € F(H)}. ThenTr*(H) #
@. Moreover, if T, is a minimal transversal of H™, then there exists
7 € Tr*(H) such that supp(7) =

Proof. Let T;, be a minimal transversal of H™. Since H is ordered, H™-!
is a partial hypergraph of H™», and hence, by (1) of Lemma 4.7 there is a
minimal transversal T,,_; of H™-! such that T,—; C T,,. Continuing this
argument we construct a nested sequence, T} CT5 C --- C Ty C T, Of
minimal transversals where each T is a minimal transversal of H™. For
1 < i < n,let 0; = 6(Ty,7;) be the elementary fuzzy subset with support
T; and height ;. Then 7 = U{0; | 1 < i < n} is a locally minimal fuzzy
transversal of H with support 7,,. B

Theorem 4.9 Suppose H = (X,£) is a simply ordered fuzzy hypergraph
with F(H) = {r1, 72, ..., o} and C(H) = {H™ | r; € F(H)}. Then if T;
is a minimal transversal of H™, there exists T € Tr*(H) such that 7% =T.



4.2 Fuzzy Transversals of Fuzzy Hypergraphs 145

Proof. Suppose T; is a minimal transversal of H™. Since H is simply
ordered, (1) and (2) of Lemma 4.7 imply that a nested sequence, T; D
-2 Tk D .- DT, from T; to T; and a nested sequence, T; C -

Tk - C Tn, from T; to T, can be constructed, which together produce
a nested sequence

C-ChLyC--CLC-- CT C--- C Ty,
where Ty € Tr(H™), for all integers k from 1 to n. As before, for each k,
let o« be the elementary fuzzy subset with support T and height 7. Then
7 =U{ok | 1 < k < n} has the desired properties. B

Lemmas 4.10 and 4.12 below provide essential information about the
members of Tr(H). We first need a few definitions.

Definition 4.14 A fuzzy hypergraph H = (X,£) with fundamental se-
quence 0 < t, < --- < 7y 1is sectionally elementary if for each fuzzy edge
p € E and for each i € {1,..., n},pt = p™, for all t € (riy1,7i], where it
is understood that T4y = 0.

Definition 4.15 Let u be a fuzzy subset. The lower truncation of u ai
level t, 0 <t <1, is the fuzzy subset p defined by
_ [ =) fzep
Ho(e) = { 0 otherwise.
The upper truncation of . at level t, 0 < t < 1, is the fuzzy subset p(*)
defined by
t ifrept
() = ’
wO (=) u(zx) otherwise.

Definition 4.16 Let £ be a collection of fuzzy subsets of X and let

E® = {1 | v e £},

S(t) = {l/(t) |ve 5}

Then the upper and lower truncations of a fuzzy hypergraph H = (X, £)
at level t are the fuzzy hypergraphs, H® and H(s), defined by

HO = (X,E®) and Hy = (X', Ey)), respectively.

We note that X' = LeJesupp(z/(t)) may be a proper subset of X.

Definition 4.17 Let X be a finite set and p € Fp(X). Then each t €
(0,h(p)) for which u¢ C ut,t < ¢ < h(u), is called a transition level of p.

We emphasize that the height h(u) of a fuzzy subset u is not considered

a transition level of u. Thus, an elementary fuzzy subset has no transition
levels.

Definition 4.18 Let X be a finite set and suppose p € Fp(X)\{0}. Then
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(1) the basic sequence of p, denoted by S(u), is the sequence S(p) = {tf,
th, ..., thu} determined by p where it is understood that

(a) th >th > - >thy >0,

(b) t1 = h(w),
(c) {th,... th.} represents the set of transition levels of u;

(2) the set of basic cuts of p, denoted by C(u), is the set of cuts of p
defined by C(p) = {p* | t € S(u)};

(3) the basic elementary join (or simply basic join) of p is the synthesized

join, p = gJ( ) o(ut,t), of the basic elementary fuzzy subsets, E(y) =
teS(p

{o(ut,t) | t € S(n)} of p.

Lemma 4.10 Let H be a fuzzy hypergraph with F(H) = {r1,...,ra},
where 0 < 1, < --- <7. Then

(1) Ift is a transition level of T € Tr(H), then there ezists an € > 0 such
that, for all ¢ € (t,t + €], 7, is a minimal H'-transversal extension
of ¢ (i.e., if T C A C 7!, then A is not a transversal of H*).

(2) Tr(H) is sectionally elementary.
(3) ¥(Tr(H)) € F(H).

(4) For each 7 € Tr(H), 7¢ is a minimal transversal of H® for ro < ¢ <
T1.

Proof. (1) Let { be a transition level of a minimal fuzzy transversal T €
Tr(H). Then 7¢ C 7¢ for all c satisfying { < ¢ < h(H). Since the support
of 7 is finite, there exists an € > 0 such that 7° is constant on (£, {+¢]. Let
¢’ € (,1 + €] and assume there exists a transversal T' of H? satisfying

“ cTcrt (44)

We now show that this assumption is false. That is, that (4.4) is false. Let
E(7) = {o(7%,t) | t € S(7)} denote the collection of basic elementary fuzzy
subsets of 7 (see Definition 4.18). Note, in view of (4.4), that C(t)UT
forms a nested sequence of subsets of X, where C(7) denotes the set of basic
cuts of 7 (see Definition 4.18). In addition, since H = (X, £) is defined on
a finite set X and £ is a finite subset of Fp(z), for each r € (0, h(H)) there
is a corresponding number &, > 0 such that

(i) He is constant on (r, r + &,], and

(ii) H€ is constant on (r — &,,7].

From these considerations it follows that the level cuts 7 of the join

#=U{{E(1) \a(r, )} Ua(r", i — ;) U o(T,1)}
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satisfy

aC _ T ifCE(f—Ee,ﬂ,
’ —{  ifce (0,hH))\ (- ez ). (4.5)

Eq. (4.5) is derived under the supposition that ¢; is sufficiently small so
that no transition level of 7 is contained in the open interval (£ — ¢;, ).
Notice that, since T is presumed to be a transversal of Ht and H€ is
constant on ({—¢;, ], T is a transversal of H* for all ¢ belonging to (¢ —g;,1).
In addition, 7€ is a transversal of H° for all ¢ € (0, h(H)] (see Proposition
4.6). Therefore, it follows from (4.5) and Proposition 4.6 that { is a fuzzy
transversal of H. Now ¥ C 7 by (4.4) and (4.5) and so we conclude that
7 ¢ Tr(H), which is a contradiction. Hence (4.4) is false.
(2) Let 7 € Tr(H). Then, in view of Proposition 4.6,

7¢is a transversal of H for 0 < ¢ < h(H). (4.6)

Suppose ¢ is a transition level of 7. Associate with ¢ an interval (¢,t + €],
e > 0, on which 7€ is constant. Then select a value ¢’ € (¢,t +¢]. From
part (1), 7° is not a transversal of H*. Thus by (4.6),

™ ¢ (Tr(H)), (4.7)

where (T'r(H))! is the t-cut of Tr(?). However, according to the definition
of F(Tr(H)) (see Definition 4.6), (4.7) implies t € F(Tr(H)).

(3) First, we consider the following claim.

We claim that if ¢ is a transition level of a member 7 of Tr(H), then
t e F(H).

To prove this claim, assume there is a 7 € Tr(H) with a transition level
t ¢ F(H). Then for some r; € F(H), ;41 < t < r;, where it is understood
that r,; = 0. Therefore, as H¢ = H™ for all c € (7j41,75], it follows that
7' is a transversal of H* = H"s. Moreover, there is an € > 0 such that 7¢
is constant on (t,t + €]. Without loss of generality, assume ¢ + ¢ < r; and
select ¢’ € (t,t +¢€|. Then, since ¢ is a transition level of 7, 7¢ C 7* and
from part (1) 7¢' is not a transversal of Ht. But this is impossible, since
7¢ is a transversal of H° and H¢ = H™5 = H*. This establishes the claim
and proves that

{t |t is a transition level of some T € Tr(H)} C F(H).
With this latter result and the fact that h(7) = r; € F(H), for all 7 €
Tr(H), it follows at once that F(Tr(H)) C F(H).

(4) First we show that 7™ is a minimal transversal of H™. Suppose
this were not the case. Then, since 7™ is a transversal of H™, there is a
minimal transversal T of H™ properly contained in 77 . Thus let

F=7)ye 1,
where o, is the elementary fuzzy subset with support T and height r;, and
7("2) i the upper truncation of 7 at level . Clearly, 7 is a fuzzy transversal
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of H such that # C 7. This is impossible. Therefore, 7™ € Tr(H™). From
parts (2) and (3) of this lemma, it follows at once that ¢ € Tr(H*®) for
rp<c<r.I

Properties (1)-(4) also hold for Tr*(H). This is easily established from
the fact that if ¢ is a transition level of some 7 € Tr*(H), then 7¢ cannot
appear as a higher level t-cut for any member of T7*(H) and from the fact
that Tr*(H) C Tr(H).

Before continuing, we illustrate Lemma 4.10. Let H = (X, £) be a fuzzy
hypergraph of Example 4.3. Recall that Tr(H) = {7}, where 7(a) = 0.9,
7(b) = 0.4, and 7(c) = 0. Now H%* = ({a,b,c},{{a,b}, {b},{a,b,c}}) and
H%® = ({a},{{a}}). The transition level of 7 is 0.4. Let t = 0.5. Then
Ve € (04,04 + €], 7° = {a}. Clearly, then 794 = {a,b} is a minimal
H%4—transversal extension of 7¢. Note however that 794 is not a minimal
transversal of H%4 since 704 > {b}.

Proposition 4.11 Let H = (X,£) be a fuzzy hypergraph, and let ry =
h(H). Then theri-cut, (Tr(H))" of Tr(H) satisfies (Tr(H))™ = Tr(H™).

Proof. The proof follows from part (4) of Lemma 4.10 and Algorithm
4.1. R

The following lemma expresses a fundamental property shared by all
fuzzy transversals.

Lemma 4.12 Every fuzzy transversal of a fuzzy hypergraph H contains at
least one minimal fuzzy transversal of H.

Proof. Let F(H) = {r1,...,mp}, where 0 < r, < --- < 7, and assume v
is a nonminimal fuzzy transversal of H. A 7 € Tr(H) such that 7 C v is
constructed through a series of reductions, {p; € Fp(X) | i =0,1,...,n}
satisfying

T=p, S~ CpCpCv (4.8)

From Propositions 4.4 and 4.6 it is clear that h(v) > h(H) = r; and v° is
(or contains) a crisp transversal of H¢ for 0 < ¢ < r;. Therefore, we begin
our reduction process by setting

po = y("l),
where v(") signifies the upper truncation of v at level r; (see Definition
4.15). As the top cut of py, namely v™*, contains a crisp minimal transversal
T, of H™, we define

= V("2) 8] or,,
where o1, is the elementary fuzzy subset with support 7) and height
ry. Clearly, p; € py € v. The remaining members in (4.8) can be de-
termined in a similar manner. For example, we set
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P2 = vl u or, Uop,
where o1, is an elementary fuzzy subset of height 7o and support Tb:

e .
T, = { T, if T} is a transversal of H"2, (4.9)

Az otherwise,

where Ao is a minimal H"2-transversal extension of T (that is,if T) C B C
Ao, then B is not a transversal of H"2) which is contained in the rp-level
cut of v, namely v"2. The properties of A, are possible since ©™ contains
a transversal H". Moreover, since T> C 12, it is clear that p, C p;. When
the reduction process is completed, T = p,, is certainly a fuzzy transversal
of H (according to Proposition 4.6) and is contained in v.

We now show that 7 € T'r(H).

Suppose p is a fuzzy transversal of H such that 4 C 7. Then

(1) p¢ C 7€ for all ¢ € (0, h(H)], and
(2) pé c 7¢ for some & € (0, h(H)).

However, by a simple inductive argument, no such é can exist. To begin,
suppose ¢ € (r2, r1). Then as pu® C 7°, u€ is a transversal of H = H™,
and 7¢ € Tr(H™), it follows that

u¢=7° on (rg,m]. (4-10)

Now suppose ¢ € (r3, r2]. Then, by (4.10),

p¢ 27 for all c € (r3,2). (4.11)

I T, =T, =™, then by (4.11), u® = 7° on (r3, 72]. On the other hand,
if ) C T2 and T} C p° C Ta, then by (4.9), p° would not be a transversal
of H® = H™, which would contradict the fact that p is a transversal of
H. Thus we conclude that

u¢=1T1° on (r3,re). (4.12)

The argument establishing (4.12) is typical, and we are forced to conclude
that

¢=7° on (0, h(H)]. (4.13)
Hence the strict inclusion u C 7 is impossible. l
We now examine the question, “when is Tr*(H) = Tr(H)?" A partial

answer appears below in Theorem 4.13. The result is connected to the
structural property presented in Definition 4.20.
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Definition 4.19 An ordered pair (H, K) of crisp hypergraphs is T-related
if whenever Qy is a minimal transversal of H, Py is a transversal of K,
and Qg C Pk, then there is a minimal transversal Px of K such that
Qy C PK C Pg.

Definition 4.20 A fuzzy hypergraph H with F(H) = {ry, ..., Tn}, where
0< 7y <--- <1, is T-related if every successive ordered pair (H™, H™i-1)
of members from the core set, C(H) = {H™,H™,...,H™}, is T-related.
In the particular case where the fundamental sequence of H has but one
member, H is considered (vacuously) to be T-related.

Theorem 4.13 Let H = (X,€) be a T-related fuzzy hypergraph. Then
Tr*(H) =Tr(H).

Proof. Suppose that H is T-related, and let F(H) = {r1, ..., r,}, where
0 <7, < --- < ry. First consider the case where F(H) = {r;}. In view
of part (4) of Lemma 4.10, it follows that for every 7 € Tr(H), the c-cut
7¢ belongs to Tr(H€) for all ¢ satisfying 0 < ¢ < h(H). Thus Tr*(H)
=Tr(H).

Next, assume |F(H)| > 2. Since Tr*(H) C Tr(H), it remains to show
that Tr(H) C Tr*(H). Let 7 € Tr(H), and suppose that 77t C 772. We
know that 772 is a transversal of H™, 7™ is a minimal transversal of H™,
and (H™, H") is a T-related ordered pair. Therefore, if 772 were not a
minimal transversal of H™2, then there would exist a minimal transversal T
of H™ such that 77t C T, C 772. Hence we could define a fuzzy transversal
7 of H with the property that ¥ C 7 (which is a contradiction) as follows:
Let 7 = T} and set ¥ = 7("™) U g5 U o1, where 0; is an elementary fuzzy
subset with support T; and height r; (i =1,2). _

This impossibility shows that 772 is a minimal transversal of H™ and
therefore, in view of parts (2) and (3) of Lemma 4.10, 7¢ is a minimal
transversal of H¢ for ¢ € (r3, 71].

We can continue recursively in this fashion and show for each c € (0,71]
that 7¢ € Tr(H*<). R

The following example shows that the converse of Theorem 4.13 is not
true.

Example 4.4 Suppose H = (X,€) is a fuzzy hypergraph given by the in-
cidence matriz
K1 H2 M3
09 09 O
09 0 09
0 09 09
06 06 0.3
03 03 06

H=(XE) =

0O QA O SR
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Then E% = {{a,b},{a,c},{b,c}},E*® = {{a,b,d},{a,c,d},{b,c,e}},
EO'3 = {{ay br d7 6}, {a’ c, dy 6}, {b~ c, d’ e}}
Clearly, F(H) = {r; = 0.9,72 = 0.6,r3 = 0.3}, and

T1T T1 T3
a 09 09 O
b 09 0 09
Tr(H) =Tr*(H) = ¢ 0 09 09
d 0 0 O

e 0 0 O
Since {d,e} € Tr(H™) and {d} € Tr(H™), no minimal transversal of
Tr(H™) contains {d,e}. Thus, (H™, H™) and in turn H is not T-related.

The next theorem is a partial converse of Theorem 4.13. Later an unre-
stricted necessary condition for Tr*(H) = Tr (H) is developed.

Theorem 4.14 Let H = (X,£) be an ordered fuzzy hypergraph. Then
Tr(H) = Tr*(H) if and only if H is T-related.

Proof. In view of Theorem 4.13, it suffices to show that Tr(H) = Tr*(H)
implies H is T-related. Assume F(H) = {r1,72,...,mn}, where 0 < r, <

- < 11, and suppose that H is not T-related. We construct a min-
imal fuzzy transversal of H that fails to belong to Tr*(H). Towards
this goal we begin with a pair (H™, H"+!) that is not T-related, where,
C(H) = {H™ | r; € F(H)}. Then there exists a minimal transversal T; of
HT# contained in a transversal T of H™i+! with the property that S isnot a
minimal transversal of H™#+! for every § satisfying T; C S C T. Since H is
ordered, the edges of H™ form a subset of the edges of H":+!. Therefore, T;
is not a transversal of H":+!, for otherwise T; would be a minimal transver-
sal of H™+1, contradicting the above assumption that this is not the case.
Let T be any transversal H™i+' such that

T, CTCT (4.14)
and
if T, C B T, then B is not a transversal of H™+'. (4.15)
Then, as noted earlier,
T is not a minimal transversal of H™+'and T; C T". (4.16)

Thus we are now able to construct a minimal fuzzy transversal 7 which does
not belong to T'r*(H). First, using the process described in Algorithm 4.1,
we find a minimal fuzzy transversal # of H(") where T; is the top cut of
7 at level r; and , in addition, satisfies the property that #™+' C 7. In
conjunction with part (1) of Lemma 4.10, it is clear that the r;,-cut, 77+,
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of # must equal some T satisfying both (4.14) and (4.15) and, therefore,
(4.16) as well. As a result, # € Tr(H(™)) \ Tr+(H)).

Second, we assume for the sake of completeness that r; < ;. As H is
ordered, part (1) of Lemma 4.7 implies that there exists a nested sequence
of crisp minimal transversals T; D T;_; 2 --- 2 Ty of H™, H™-1, ... H™,
respectively. Let o; denote the elementary fuzzy subset with support T;
and height r;. Then 7 =03 U ... U gi—; U 7 belongs to Tr(H) but not to
Tr~(H).- 1

In the proof of Theorem 4.14 above, we were given a pair (H™, H+1)
which is not T-related and then constructed a minimal fuzzy transversal 7
which does not belong T7*(H). In the process we showed that t = r;,
is a transition level for 7. This implies (by part (2) of Lemma 4.10) that
riv1 € F(Tr(H)). Thus, we have the following result.

Corollary 4.15 Let’H be an ordered fuzzy hypergraph with F(H) = {ry,...
,Tn}, where 0 < 1, < --- <71, and C(H) = {H™ | r; € F(H)}. Ifan
ordered pair (H™, H+!) is not T-related, then

(1) riy1 € F(Tr(H));
(2) Tiy1 is a transition level for some T € Tr(H)\ Tr*(H).

If H is a u tempered fuzzy hypergraph, then H is simply ordered by
Theorem 4.2. However, for such an H it is not necessarily the case that
Tr*(H) = Tr(H). This is shown in the following example by displaying
such an H which is not T-related.

Example 4.5 Let p: X — (0,1] be a fuzzy subset of X = {a,b,c,d, ¢, f,g}
such that p(g) = 0.4 and u(z) =09 ifz € X \ {g9}. Let H = (X,E)
be the crisp hypergraph on X with edges Ey = {a,b,d}, E» = {a,c,d},
E3z={d,e, f}, B4 ={a,e} and E5 = {e,g}. Then

vV, V2 V3 Vg Vs
09 09 009 O
09 0 0 O0 O

009 0 0 O
09 09 09 0 O

0 0 09 09 04

0 009 o0 O

0 0 0 0 04
Clearly, F(H) = {r, = 0.9, ro = 0.4} and C(H) = {H™, H™}, where
H™ = (X \{g}, E") withE"" = {E; |i=1,...,4}, and H™? = H. We
have {a,d} € Tr(H™), but {a,d} ¢ Tr(H"), and that {a,d, €} is a transver-
sal, but not a minimal transversal of H™2. Therefore, the ordered pair (H™,
H7™2) is not T-related as well.

H=p®H=

Q< 0 Q0 o
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Remark 1.

(1) We have by Example 4.5 that some simply ordered fuzzy hypergraphs
are not T-related.

(2) According to Theorem 4.9, every simply ordered fuzzy hypergraph H
satisfies (Tr*(H))t = Tr(H?) for all t € (0, h(H)).

Nevertheless, in view of Theorem 4.14 and part (1) of Remark 1, there
exist simply ordered fuzzy hypergraphs for which
Tr*(H) C Tr(H).

Properties of Tr(H)

In this section necessary and sufficient conditions are determined which
characterize the set of points that belong to the support of some minimal
fuzzy transversal. This information is used later to construct a structurally
rich elementary fuzzy hypergraph H*®, where Tr(H®) = Tr(H).

Lemma 4.16 A verter x of a crisp hypergraph H = (X, E) is a member
of some minimal transversal of H if and only if x belongs to an edge which
does not properly contain another edge of H.

Proof. Without loss of generality, we assume H has no repeated edges.
Let E = {EEE|E'€eEand E'CE= E' =FE} and let X = UE. (Note
that E # 0.) Suppose Ey € E and let {Ey, ..., E,} =E\ Ey.

For each j =1, ..., n, pick some z; € E; \Eo and let 77 = {zy, ...,
zn}. Clearly T' is not a transversal of H, since T' N Ey = . However, for
each z € Eg, T" U {z} is a transversal of H and, therefore, must contain a
minimal transversal T of H. Obviously, T contains x; otherwise T would
be contained in T", which is impossible, since T” is not a transversal of
H. Therefore, z € V(Tr(H )) and consequently, X C V(Tr(H)).

Conversely, suppose 2o € X \ X. Then o belongs only to edges which
properly contain another edge. Thus, whenever z belongs to an edge E
there must exist another edge E’ such that E' C E \ {zo}. This implies
that if T is a transversal then T \ {zo} is also a transversal of H. Hence
zo ¢ V(Tr(H)). Thus (X \ X)NV(Tr(H)) = 0. Hence X = V(Tr(H)). B

Proposition 4.17 Let H = (X , E) be the partial hypergraph obtained by
deleting from the edge set E of H all edges which properly contain another
edge. Then

(1) Tr(H) =Tr(H),
(2) uTr(H)=X.1
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To establish a proof for a fuzzy version of Lemma 4.16, we need the
following definition and lemma.

Definition 4.21 The join of a fuzzy hypergraph H, denoted J(H), is de-
fined by

J(H) =“g£ K,
where £ is the fuzzy edge set of H.

For each t € (0, h(H)), the t-level cut, (J(H))!, of J(H) is the vertex set,
Xt = V(H?), of the t-level hypergraph H* of H.

Lemma 4.18 Let H = (X,£) be a fuzzy hypergraph and suppose T €
Tr(H). If x € supp(T), then there exists a fuzzy edge p of H for which

(1) p(z) = h(p) = 7(z) >0
(2) Th#) O phe) = {g}.

Proof. Assume z( belongs to the support of some fuzzy minimal transver-
sal 7 of H and let ¢ = 7(xo). Since every transversal of H contains a
transversal which is contained in J(H), we have

T C J(H). (4.17)

Now (4.17) implies zo € X% (= V(H?*)). Therefore, there is at least
one fuzzy edge p of H which satisfies u(zg) > to. Let M = {u,, ..., g}
denote the set of edges in H where the degree of membership for zo equals
or exceeds tg.

We now show that at least one member of M has height g.

For suppose otherwise, then

for each member u; of M. This would imply that for each member p; of
M there is a member z; € supp(7) for which
z; € (#j)tj e adi (419)
at a level t; greater than 9. However, since 7(zo) = to, (4.18) and (4.19)
would imply
zj £z, j=1,..., m, (4.20)

for each member p; of M. But if (4.18)-(4.20) were true, it could then be
shown that 7 ¢ Tr(H) by constructing a fuzzy transversal 7 of H which
satisfies # C 7. This contention follows by the fact that, since both X and
£ are finite, there is an e-interval (¢g — ¢, o) such that
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H'=H" on (t —¢,tg]. (4.21)

Define T(z) if z # o,

7'(:1:)={ to—¢ ifx=uxg

Clearly, 7 C 7. Moreover, 7 is a transversal of H. For, in view of (4.18)-
(4.20), 7' \ {zo} contains {z; | j =1, ..., m} and, therefore, in view of
(4.18), (4.19) and the definition of M, 7'\ {z} is a transversal of H*. Also
in view of (4.21), the same is true for every H* where t € (to —¢,to]. Thus,
since 7' = 7t for all ¢ € (0,h(H)] \ (to — €,to), it is evident that 7 is a
transversal of H. This establishes the claim and, consequently, there exists
a p € H for which u(zo) = h(p) = 7(x0) > 0.

Finally, suppose all edges in M = {u,, ..., u,,} of height 7(zo) contain
more than one member of 7%. Then, by basically repeating the above
argument, it can be established that 7 is not a fuzzy minimal transversal
of M, which is a contradiction. Il

In the following example, we illustrate some of the concepts recently
introduced.

Example 4.6 Consider the fuzzy hypergraph defined in Example 4.1. Then
i1, 43 and pg have no transition levels, while p, and p, have transition lev-
els 0.4. The basic sequences (see Definition {.18) are as follows: S(u,) =
{0.7}, S(up) = {0.9,0.4}, S(u3) = {0.9}, S(u,) = {0.7,0.4}, and S(u;) =
{0.4}. Thus C(u,) = {}7}, Clug) = {#3°, 43}, Cus) = {137}, Clpy) =
{£Q7, 18}, and C(us) = {pud*}. Now p3® = {a,b} and p3* = {a,b,d}.
We see that py = o(p39,0.9) U o(ud4,0.4) and E(uy) = {0(x32,0.9),
o(134,0.4)} = {(#2)0.9) = (H2)0.7)> (42)®?}. Recall that F(H) = {0.9,
0.4} and C(H) = {H™ | r; € F(H)} = {H*® = ({a,b,¢},{{a,b},{b,c}}),
H%4 = ({a,b,c,d}, {{a,b},{a,b,d}, {b,c}, {b,c,d},{a,c,d}})}. We now de-
termine Tr(H) and Tr*(H). If 7 € Tr(H), then 720 A P £ g for i =
1,2,3,4,5. Thus 7%7N{a, b} # 0, and 7%°N{a, b} # 0, 7%9N{b,c} # 0, 7%7N
{b.c} # 0. and 7% N {a,c,d} # 0. We see that Tr(H) = {T1,72, 73,74},
where {T1,79,73,74} is represented by the following incidence matriz.
T2 T3 T4

71
09 0 0 04

a
b 0 09 09 09
c 09 04 0 O
d 0 004 O

NowTr(HO%) = ({8}, {a, c}} and Tr(HO4) = {{a,c}, {b,c}. {b,d}, {{a,b}.
{a,c,d}}. Hence Tt € Tr(H?) for all t such that 0 < t < h(H) = 0.9 only
fori=1. Thus Tr*(H) = {11}

We now illustrate Lemma 4.18.
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#2(a) = h(py) = 71(a) = 09, pa(c) = h(pz) = T1(c) =09, 19N pd? =
{a}, 9% N 439 = (c}.

#z(b) = h(py) = T2(b) = 0.9, p5(c) = h(ps) = T2(c) = 0.4, 732N pd® =
{6}, 794 N pd* = {c}.

p3(d) = h(uz) = 73(b) = 0.9, p5(d) = h(ps) = 73(d) = 0.4, 73%N p3® =
(b}, 794 N 3 = {a).

ps(@) = h(ps) = Ta(b) = 0.4, u3(b) = h(pz) = 74(b) = 0.9, 734N =
{a},73° N pg® = {b}.

Note that 0.9 = h(H) and (Tr(H))*? = {799,73°,739,73%} = {{a,c},
{6}, {6}, {6}} = {{a,c}, {b}} = Tr(H"®). (See Proposition 4.11).

Theorem 4.19 Let H = (X,£) be a fuzzy hypergraph and suppose x €
X. If there exists a 7 € Tr(H) with x € supp(T), then there isa p € £
such that:

(1) u(z) = h(n)-

(2) For every v € € in which h(v) > h(u), the h(v)-level cut of v is not
a (proper or improper) subset of the h(u)-level cut of p.

(8) The h(p)-level cut of p does not properly contain another edge of
Hh#)

(4) 7(z) = p(z).

Conversely, if there erists a pair {z,u}, where z € X and p € £, which
satisfies (1), (2), and (3), then x belongs to the support of some minimal
fuzzy transversal T of H which satisfies (4).

Proof. Suppose z belongs to the support of a minimal fuzzy transversal 7
of H. By Lemma 4.18, there exists an edge 1, € £ which satisfies properties
(1) and (4) and the condition

rhED A ()M = (2} (4.22)

Clearly, u, satisfies property (2) also. For otherwise, there would exist a
v € € such that h(v) > h(p,) and

ANl (TR LG (4.23)

However, since 7"(*) N »"(*) is nonempty, there exists y in this intersec-
tion, and y # z since 7(y) > h(v) > 7(z). Therefore, in view of (4.23),
condition (4.22) would not hold.

Finally, suppose u, does not satisfy (3). Then there exists a yu, € £ such
that

(o)) C (py) ) (4.29)
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C].ear 1}’»

h(pe) = h(p); (4.25)

for otherwise p; would not satisfy (2).

Furthermore, in view of (4.22), (4.24) and (4.25) and the fact that 7 is a
transversal of H,

rhlk) 0 () M) = {2},
Thus, p, satisfies (1), (2), and (4). If, in addition, u, satisfies (3) we are
done. If not, the above process can continue until eventually a y; € £
is determined which satisfies all four conditions. That this is true follows
from the finiteness of X along with the fact that

(uk)h(/"l) Cc---C (pz)h'("‘l) C (/J,l)h("l),
together with the fact that each p;, j = 1, ..., k, has height h(y;) and
satisfies conditions (1), (2), and (4).

Conversely, suppose the pair {z,u}, where z € V(H) and p € £(H)
satisfy conditions (1), (2), and (3).

Then h(p) € F(H). For otherwise there would exist a pair {r;, rj+1} C
F(H) such that

rian < h(g) < rj. (4.26)

However, as H* is constant on (r;41, 7], (4.26) would imply that there
exists a v € £ such that

”h(”’) = l/r);
this, however, indicates that x does not satisfy (2), which is a contradiction.
Let F(H) = {r1, 72, ..., 7n} and 7} > 7o > --- > 1,,. There are two

cases to consider.

First, suppose h(u) = r;. By condition (3) and Lemma 4.16, there exists
a minimal transversal T of H™ containing z. Since there is a 7 € Tr(H)
for which 7™ = T by Proposition 4.11, it follows that = belongs to the
support of a minimal fuzzy transversal 7 and 7(z) = p(z).

Secondly, suppose h(p) =% < 7 andlet C(H) = {H™ = (X", E™) | r;
€ F(H)}. Then, for j € {1,2, ..., k — 1}, condition (2) implies that

E\ puh®) £0, for every E € E™. (4.27)

We now use property (4.27) in the construction of a nested sequence of sets
CTC-- CThny
which satisfies
(8) Ty N ph®) =0,
(b) Ty € Tr(H™),
(c) Tj is a transversal of H™ with the property that any S which satisfies
T;_, € S CTjisnot a transversal of H™#, for j =2, ..., k—1.
The construction of the sequence Ty, ..., Tk_; begins with the determi-
nation of some T; € Tr(H™) such that 73 N p™#) = @; which is possible
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in view of (4.27). By property (4.27), it follows that 7} is contained in a
transversal T2 of H™ where T2 Nph#) = 0. T, is then determmed as a
minimal H"2-transversal extension of T which is contained in Tz, or Ty is
Ti, the latter situation occurring whenever T3 is a transversal of H2. By
the above recursive technique the sequence is constructed.

Moreover, as pu satisfies condition (3), every edge of H™ not equal to
ph®) contains a point not in p*(#). Thus, there exists a transversal T of
HT™ such that

Ti.1 CT and Tnﬂh(”’) = {:c}

Therefore, there must exist a minimal H ™ -transversal extension T} of Ty
that contains x and is contained in T.

If r. # 7, then the established sequence T3, ..., Tk—1, T} is continued
by computing recursively Tk+1, - .., Tn, so that the completed sequence

NC ChLinyCTiCTh &---CT,
satisfies the above mentioned property (c) for j =2, ..., n. Let

T=0y U - Uo0og-1 Uokg U0orpr U -+ Uop,
where 0; = o(T}j,7;) is the elementary fuzzy subset with support T; and
height r; . Hence 7 € Tr(H), and the constructive process yields

7'(-T) =T = #(I))
which establishes property (4). l

Corollary 4.20 Let H = (X,E). If u € E satisfies condition (2) in The-
orem 4.19, then h(p) € F(H). H

This observation sheds light upon the generality of the constructive
process used to determine C(H) in Construction 4.1 below.

Construction of H®

The characterization given in Theorem 4.19 suggests that the procedure
described in Proposition 4.17 is extendable, after modifications, to fuzzy
hypergraphs. In particular, given H, the process (described below) is ap-
plied to the members of C(H). Once this process is completed, an ele-
mentary fuzzy hypergraph, designated H*, is (uniquely) constructed with
the property that Tr(H®) = Tr(H). The usefulness of H* will be made
apparent in what follows. In addition, some efficiency can be obtained in
determining T'r(H) if Algorithm 4.1 is applied directly to H*.
We now consider the construction of C(H).

Construction 4.1 Let H be a fuzzy hypergraph with fundamental se-
quence F(H) = {rl, ..ey Tn}, where 0 < 7, < --- < 7, and core set
C(H)={H™, ..., H™}. The construction of C(H) from C(H) is a recur-
sive process:
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Step 1: Determine a partial hypergraph Hm of H™ by eliminating all
edges in H™' that properly contain another edge of H™.

Step 2: Eliminate all edges of H™ that either properly contain another
edge of H™ or contain (properly or improperly) an edge of H™. Then,
either all edges of H™ are eliminated (and H™ does not exist) or the
remaining edges form a partial hypergraph H7 of H™.

Assume Step 7 has been carriedout forz =1,2,...,k;1<k<n-1,n>
2.

Step k+1: Eliminate all edges of H™=+! that either properly contain an-
other edge of H™*+! or contain (properly or improperly) an edge of H™ for
i=1,2,...,k (if they exist). Then, either all edges of H"*+! are eliminated
(and H™+! does not exist) or the remaining edges form a partial hyper-
graph H™+' of H™+!. Continuing recursively in this manner through Step
n, we obtain a subsequence

FH) ={r, ..., 5} (4.28)

of F(H), where 0 < %, < --- < r{(=r1), and a corresponding set

CH)={A", ..., H™™} (4.29)
of partial hypergraphs from C(H). (We emphasize that each member of
C(H) has a nonempty edge set and that for every r; € F(H)\{r{, ..., 75,}
the entire core hypergraph H™ was eliminated in the recursive process.)

Next, let us consider the construction of H?*.

Construction 4.2. Let H = (X,£) be a fuzzy hypergraph. Assume
F(H) and C(H) have been determined as described in Construction 4.1
(see (4.28) and (4.29)). Define H®* = (X*,£°) to be the elementary fuzzy
hypergraph satisfying:

(1) F(H*) = F(H) = {r}, ..., m.},
(2) if p € %, then h(p) € F(H), and

(3) for each j, 1 < j < m, the family of edges in £° of height ] is the set
of elementary fuzzy subsets {o(E,r5) | E € a7},

‘H? is called the skeleton of H. For convenience the notation (H)*® is
sometimes used in place of H*. A
The following two lemmas describe structural properties of C(H).

Lemma 4.21 Let H = (X,£) be a fuzzy hypergraph and let
C(H)={H" = (X73,E7)|r; € F(H)}

represent the set of crisp hypergraphs determined from the core set of C(H)

by the process described in Construction 4.1. Then
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(1) ES = {uh® | pe &, h(p) = 72, and p satisfies conditions (2) and
(3) of Theorem 4.19}.

(2) E= U{Er; |3 € FH)} = {u*®) | u € £ and satisfies conditions
(2) and (3) of Theorem 4.19}.

(3) B(H) = {h(p) | 1 € € and satisfies conditions (2) and (83) of Theorem
4.19}.

Proof. (1) Suppose 4 is an edge of H such that h(u) = ri and which

satisfies conditions (2) and (3) of Theorem 4.19. Then, E = p"*) contains
no edge of H™ € C(H) if r; > 2. (For if otherwise then there is an edge
E; of H™, where r; > rj, such that E; C E. Consequently, there is a
v € € such that v = E;. This implies +**) C E and h(y) < i < h(v),
which contradicts the assumption that p satisfies (2) in Theorem 4.19.)
Moreover, since u satisfies condition (3) of Theorem 4.19, it follows from
Construction 4.1 that E = p"®#) is a member of E™7, and therefore the
right side of (1) contains E"5.

Conversely, suppose E € E77 and let M = {u € £ | u"7 = E}. Note that
M is not empty. Suppose h(p) > r; for some p € M. Then, according to

the definition of F(H), u"*#) must be an edge of some H™ € C(H) where
r; > 5. This implies E contains an edge E’ (C uM#)) of some member
H™ € C(H) where 7§ > r; > ri. As a consequence,the constructive

algorithm for determining C() would not select E as a member of E'J,
which is contradictory. Thus every member p € M has height h(y) =
r;. Hence ph®) = E for every p € M. With this knowledge and the

method used in Construction 4.1 for determining C(H), it follows that
every member of M satisfies both conditions (2) and (3) of Theorem 4.19.
Thus, the structure of K™ given in (1) is established. More specifically,
note that if condition (2) did not hold for some member u € M, then
E = u"®) would contain v**) for some v € £ with h(v) > h(x). In
turn, this would imply p#) contains an edge E’ = v"*(*) which belongs to
some H™ € C(H) with r; > r$. Finally, either E' is or contains an edge
E” of some H™ € C(H) where 7§ > r;. With E” C E, the algorithm
for determining C(H) would not allow E to be a member of E™ since
r$ < ri. Of course, this contradicts the assumption that E € E".

(2) Suppose u is an edge of H which satisfies condition (2) of Theo-
rem 4.19. From Corollary 4.20, it follows that h(u) € F(H), say h(p) =
ri. Moreover, an argument in the proof of part (1) indicates that p*(*)
contains no edge of H™ € C(H) for r; > 7.

Thus, if p is an edge of H which satisfies both conditions (2) and (3)
of Theorem 4.19, then the algorithm for computing C(H) clearly assigns
E = p*® to B™*. Consequently, . € F'(H). This result, combined with
the characterization of B> given in (1), clearly establishes part (2).
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(3) The argument given in the proof of part (2) indicates that the right
side of (3) is contained in F(H). On the other hand, the characterization
of E™ given in (1) mph&s that F(H) is contained in the right side of (3).
This establishes (3). W

Lemma 4.22 Let H = (X,€) be a fuzzy hypergraph and let CH) =
{H7 = (X7 E7) | r2 € F(H)}. Then,

(1) F(Tr(H)) = F(H).

(2) {7(z) | = € supp(7), T € Tr(H)} = F(H).

(8) X7 ={ze X |1 eTr(H) and 7(z) =ri}.

(4) U{supp(r) | 7 € Tr(H)} = U{X™3 | r§ € F(H)}.

(5) U _ X7 ={z€ X |1 €Tr(H) and 7(x) > r{}.

Proof. (1), (2): It follows immediately from Theorem 4.19 that

{r(z) |z € supp(r),7 € Tr(H)} = {h(1) | 1 € € and satisfies
conditions (2) and (3) of Theorem 4.19}. (4.30)

On the other hand, by (2) of Lemma 4.10,

F(Tr(H)) = {r(z) | z € supp(7), T € Tr(H)}, (4.31)
and by (3) of Lemma 4.21,

F(H) = {h(u)|nu € € and satisfies conditions (2)
and (3) of Theorem 4.19}. (4.32)
Clearly, (4.30)-(4.32) yield the desired result.

(3) Let A7 € C(H) where H”5 = (X737, E"3). Then, according to part
(1) of Lemma 4.21,

X" = UE|EeES)y=u{u"® |pek, hip)= 73, and p satisfies
conditions (2) and (3) of Theorem 4.19}. (4.33)

However, according to Theorem 4.19,

u{p"® | € &, h(p) =r}, and p satisfies conditions (2)
and (3) of 4.19}
= {ze€X|Te€Tr(H)and 7(z) =r;}. (4.34)
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Clearly, (4.33) and (4.34) yield (3).
(4), (5): The result here follows from properties (2) and (3) of Lemma

4.22. 1

Lemma 4.23 Suppose H® = (X*,E°) is determined from the fuzzy hyper-

graph H according to the procedure stated in Construction 4.2 and let the

core set of H® be identified by C(H®) = {(H®)"™* = ((X°)"*,(E*)™%) | r§ €
H)}. Then,

(1) F(H*) = F(Tr(H)),

(2) (E5)™* = US_,E™ where BT is the edge set of H™S = (X7 ,Br) €
C(H),

(3) (X%)* = Uf=1X'5 ={ze€e X |7eTr(H) and 7(z) >},

(4) X* =V(H*) = V(Tr(H)),

(5) € = E(H?) = {o(E,r) € §p(X) | (B,r) € B x {3}, r; e F(M)},

where it is understood that o(E,r) represents the elementary fuzzy subset
with support E and height r.

Proof. That F(H®) = F(H) follows from Constructions 4.1 and 4.2. This
fact, together with Lemma 4.22(1), confirms property (1) of Lemma 4.23.
Properties (3) and (4) of Lemma 4.23 follow easily from parts (5) and (4)
of Lemma 4.22, respectively. Properties (2) and (5) of Lemma 4.23 are
obvious from the definition of H*. Bl

Lemma 4.24 Let H = (X,£) be a fuzzy hypergraph. Then the following
properties hold.

(1) Every fuzzy transversal of H*® is a fuzzy transversal of H.

(2) A fuzzy transversal T of H is a fuzzy transversal of H® if and only if
supp(7) € V(H*).

Proof. Assume 0 <75, < --- < 7§.
(1) Let 7° be a fuzzy transversal of H*. Since V(H®) C V(H),
supp(7°) € X. Let u € £&. We now show that

phE) O (72)he) £ g, (4.35)
Let 7 = A {r; € F(H) | i > h(p)}. It follows, by definition of F(H), that

u™#) belongs to the edge set E™ of the core hypergraph H™ of H.
Then, according to the construction of C(H) and Lemma 4.21(1), there

must exist some 73 € F'(H) satisfying r$ > 7 and a v € £ such that
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(a) h(v) =75 2 h(u),

(b) V") C phl)

(c) v**) € E77, the edge set of H™> € C(H).
Thus, the elementary fuzzy subset a(u"("),r;i) € H®. Therefore, since 7° is
a fuzzy transversal of H?, it follows that (7°)2*) N v*¥) £ @. This fact,
coupled with properties (a) and (b) above, implies that property (4.35)
holds.

(2) Let 7 be a fuzzy transversal of H. Then

k() (o rh(e) £ g

for each edge u € £(H). Therefore,

M k) £ g (4.36)

for every v € £(H?), since

(") v e EH%)} C () | p e E(H)}, (4.37)

where (4.37) holds because by the construction of C(#) from Construction
5.1, it follows that if E € E77, then E does not contain a t-cut v* of some
edge v of H where t > r3.

Hence, if E € E77, then there is a u € £(H) such that p™#) = E. For
there is a pu € £(H) such that E = y"5. Since E does not contain a ¢-cut
V' of some edge v of H where t > 7%, it is evident that h(u) = 7. Also, in
this regard, recall Lemma 4.21(1). Therefore, by the construction process
for determining H* (see, in particular, part (5) of Lemma 4.23), it follows
that

(") v e E(H®)} = {E € BT | rf e F(H)} C {p*® | pe E(M)}.

By (4.36), it follows from Definition 4.13 that if 7 is a fuzzy transversal of
H, then 7 is a fuzzy transversal of H® < supp(7) C V(H*).

Theorem 4.25 Let H be a fuzzy hypergraph. Then Tr(H®) = Tr(H).

Proof. Let 7° € Tr(H®). By Lemma 4.24(1), 7° is also a fuzzy transversal
of H. Therefore, in view of Lemma 4.12, there exists a 77 € Tr(H) such
that 7; C 7°. Since supp(r1) C V(H?), Lemma 4.24(2) implies 7, is a
fuzzy transversal of H°. Consequently 71 = 7° and so Tr(H°) C Tr(H).

Conversely, suppose 7 € Tr(H). From Lemma 4.23(4), we know that
supp(7) € V(H?). Therefore, according to Lemma 4.24(2), 7 is a fuzzy
transversal of H°. Hence, there is a 7} € Tr(H®) such that 7§ C 7.
However, according to Lemma 4.24(1), 7§ is a transversal of H and so
73 = 7. Thus Tr(H) C Tr(H*). W

Example 4.7 Consider the fuzzy hypergraph of Example 4.1. Recall that
1y =0.9,70 = 0.4, E" = {{a,b},{b,c}}, and E™ = {{a, b}, {a,b.d}.{b,c},
{b,c,d},{a,c,d}}. No edge of H™ properly contains another edge of H™.
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Hence H™ = H™. For H™?, {a,b,d} D {a,b} and {b,c,d} D {b,c}. Thus
we remove {a,b,d} and {b,c,d} from E™ to obtain {{a,b}, {b,c},{a,c,d}}.
Now {a,b} and {b,c} improperly contain {a,b} and {b,c} of H™, respec-
tively. Hence we remove {a,b} and {b,c} to obtain H™ = {{a,c,d}}. It
follows that r{ = 71,75 = 2. Now o({a,b},r{)(a) = o({a,b},r{)(b) =
0.9,0({a,b},r$)(c) = a({a,b},71)(d) = 0, a({b,c},m7)(b) = o({b,c},r{)(c)
=0.9,0({b,c},ri)(a) = o({b,c},r1)(d) = 0, 9({a, c,d},75)(a) = o ({a,c,d},
3)(c) = o({e,c,d}.r5)(d) = 0.4,0({a,c,d},75)(b) = 0. Then H*® = (X°,&°),
where X* = {a,b,c,d} and &° = {o({a,b},7%),0({b.c}.77),0({a,c,d},r5)}.

An inductive argument dependent upon the cardinality of F(H) was also
developed to prove Theorem 4.25. The argument was supported by the
notion of lower truncations M, of H at level ¢ (see Definitions 4.15 and
4.16). The rationale for this is clear: If F(H) = {ry, ..., 7i, ..., 5}, then

F(H,) ={r1, ... mi}
and the t-level hyperg-raph H} (re) Of H(r,) satisfies
= H* ifr; <t <h(H),

0T\ HY if0<t<m

The proof of our next theorem relies upon the fact that a subset T C
V((H*)™) is a transversal of (H")’k & for each 5 = 1, ..., k, there is
a subset T; C T such that T} is a transversal of H™ e C('H) This
charactenzatlon is established by the following argument: Suppose T C
V((H®)™*). Then,

T is a transversal of (H*)™* € C(H*)

< for each j =1, ..., k, there is a subset T; C T such that T} is a
transversal of H™5 € C(H)
< for each j =1, ..., k, there is a subset T; C T such that T} is a

transversal of H™5 € C(H).

The first equivalence follows from the structure of the edge £° of H* as
described in Lemma 4.23(5). Recall that H® is elementary, thus ordered.
The latter equivalence follows from the method of constructing C('H) from
C(H) as detailed in Construction 4.1.

Theorem 4.26 (1) For every fuzzy hypergraph H,Tr*(H) C Tr*(H®).

(2) For some H,Tr*(H) C Tr*(H®).

Proof. (1) Let H be a fuzzy hypergraph and let F(H®) = {r{, ..., r,}
be such that 0 < 73, < ---7}. Suppose 7 € Tr*(H). To show that
7 € Tr*(H®) it is required to show that 7* € Tr((H®)!) for 0 < t <
h(H). However, since F(H®) = F(Tr(H)) (see Lemma 4.23(1)) and T7(H)
is sectionally elementary (see Definition 4.14 and Lemma 4.10(2)), it suffices
to show that
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7™ € Tr((H®)™*) fork=1, ..., m. (4.38)
Since 7 € Tr*(H), it follows that
(1) T € Tr(H),
(2) ™ eTr(H™), j=1,...,m,
(3) Tk UKL XS = V((H)™®), k=1, ..., m.

Part (3) follows from the fact that 7 € Tr(H) together with the proper-
ties stated in Lemma 4.23(3).

We claim that 77 is a transversal of (H®)™, k = 1, ..., m, where
(H®)™* € C(H?).
Clearly,
TN CTEC ... C Tk, (4.39)

Each 777, j =1, ..., k, satisfies

™ e Tr(H™), (4.40)
according to property (2) above, and, by (3),

Tk C V((H)E). (4.41)

Conditions (4.39)-(4.41) are precisely those required for 7™ to be a
transversal of (H®)"*, according to the statement preceding this theorem.
Thus, the claim is established.

Property (2) implies that 77% \ {y} is not a transversal of H™* for each
y € 77%; but this implies that 77 \ {y} is not a transversal of (H*)™* for
each y € 77+, according to the statement preceding this theorem. Hence,
it is now clear that

Tk € Tr((H*)™), fork=1,..., m,
and so we have the desired result.

(2) Since H® is elementary, it is ordered. Thus Tr*(H?®) # ¢ by Theorem
4.8. However by Example 4.3, it is possible for Tr*(H) = (. B

Corollary 4.27 For every fuzzy hypergraph H, Tr*(H) C Tr*(H*) C
Tr(H®) =Tr (H).

Proof. The proof follows from Theorem 4.25 and 4.26(1). B

Corollary 4.28 If H is a T-related fuzzy hypergraph, then Tr*(H) =
Tr*(H*) =Tr(H®) = Tr(H).

Proof. The proof follows from Theorem 4.13 and Corollary 4.27. B
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Corollary 4.29 Let H be a fuzzy hypergraph. Then
(1) Tr*(H®*) = Tr(H®) & H® is T-related;
(2) Tr*(H*) = Tr(K) & H*® is T-related.

Proof. Since H? is an elementary fuzzy hypergraph, H? is an ordered fuzzy
hypergraph. Therefore, (1) follows from Theorem 4.14. Part (2) follows
easily from part (1) and Theorem 4.25. I

The next result provides us with our first unrestricted necessary condition
that must exist when Tr*(H) = Tr(H).

Corollary 4.30 Let H be a fuzzy hypergraph where Tr*(H) = Tr (H).
Then H*® is T-related.

Proof. Follows immediately from Corollaries 4.27 and 4.29 (1). H

Corollary 4.31 If H is T-related, then H® is T-related.

Proof. If H is T-related, then Tr*(H) = Tr(H), according to Theorem
4.13. Therefore, by Corollary 4.30, H* is T-related.

Neither Corollary 4.30 nor 4.31 enjoy a converse. In the case of Corollary
4.31, we use Example 4.4, which exhibits a fuzzy hypergraph H that is not
T-related but satisfies Tr*(H) = Tr(H). Applying Corollary 4.30 to this
example reveals that H® is T-related. However, since H is not T-related,
Corollary 4.31 has no converse.

The following example shows why Corollary 4.30 has no converse.

Example 4.8 Let H = (X,£) be a fuzzy hypergraph with an edge set £
defined by the incidence matriz
K1 Ho M3
a 09 0 o0
b 04 04 04 |.
c 02 09 02
C(H) = {HT‘ = (Xi,E,;) I T = 09, T = 04, Ty = 02}
with

E, ={{a’}’{c}}= E, ={{a?b}’{b:c}={b}}y

and
E3 = {{a,b,c}, {b,c}}.
Therefore,
T
a 0.9
Tr(H)= b 04 | and Tr*(H)=0.
c 0.9

However, the incidence matriz for H* is
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vy V2 V3

a 09 0 O

b 0 0 04 ).

¢ 0 09 O
Since

C(H®) = {(H*)™ = (X*)™,(B*)") | r{ = 0.9, r§ = 0.4}

with

(E)" = {{a}.{c}} and (E°) = {{a},{b},{c}},

we have that

Tr*(H°) = Tr(H?) = Tr(H).

Consequently, in view of Corollary 4.29(1), H® is T-related, while, as
indicated earlier, Tr*(H) # Tr(H).

The remaining set of theorems consider the question: What sort of at-
tributes are required of H to guarantee that H® is a u-tempered fuzzy
hypergraph, p ® H, of some crisp hypergraph H? The feasibility in an-
swering this question centers on Theorem 4.2.

In every case, the skeleton H?, associated with a fuzzy hypergraph H, is
elementary, ordered and support simple. (This is evident from Construction
4.2 of H*.) Thus, in view of Theorem 4.2, the answer to the above question
hinges on recognizing properties which, if possessed by H, are sufficient
to guarantee that H° is simply ordered. One such special property is
provided below in Definition 4.22; this property is confirmed as acceptable
in Theorem 4.34. But first it is useful to formalize the above discussion
and provide detailed structural information about #*.

The next theorem utilizes considerable notation and results from Lem-
mas 4.22 and 4.23, some of which are restated here for convenience: H* =
(X*,&°) and F(H®) = {r§ | j = 1, ..., m}, also C(H) = {A7 =
(X73.E7) | r5 € F(H®)} and C(H®) = {(H®)"S = ((X*)"3, (B*)7) | r§ €
F(H*)}. Moreover, (X®)™ =US_ X7, k=1, ..., m. Thus, (X)7\
(X#)5-1 = (X*)R\(X*)"5-1. Also, X°* = X = U, X7 and B = U], B

Theorem 4.32 If H* is simply ordered, then H*® = pu® ® H®, where H® =
(X.E) and/,Ls X — (0, 1] such that, for k=1, ..., m,p*(z) =] zfand
only if z € X"% \ (X*)"%-1. (Here it is understood that (X5)e =9.)

Proof. Since H* is simply ordered, X™* \ (X*)* -1 £0forj=1, ..., m,
every H® is elementary and support simple. Therefore, according to The-
orem 4.2, if H® is simply ordered then H® = pu* @ H*. Clearly, H® =
(X, E). To determine the structure of pe it suffices to notice that every
edge E € H™* satisfies E N (X% \ (X5)%-1) # 0.

This follows at once from the assumption that H® is simply ordered. The
acceptability of the structure for p°, as stated in this theorem, now follows
from Definition 4.12 and Lemma 4.23(5). B
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We illustrate Theorem 4.32 by reca.lhng the fuzzy hypergreaph H =
(X, €) of Example 4.7. We see that X\ (X*)6 = X09\0 = X0 = {a,c}
and X78\ (X°)7 = XO04\ (X*)°9 = {b} \ {a,c} = {b}. Thus p*(a) =
p*(c) = 0.9 and p*(b) = 0.4. Now H® = ({a,b,c},{{a}, {b},{c}}) and
H = p® ® HS.

Definition 4.22 Let H be a fuzzy hypergraph with F(H) = {r1, ..., rp},
indezed in the usual order 0 < 1, < -+ < 71, and C(H) = {H™ =
(X™,E7) |i=1, ..., n}. Then H is said to be sequentially simple if, for

i=2,...,n, E€ E" \ E"-! implies E\ X"~ # (.

Lemma 4.33 If H is a sequentially simple fuzzy hypergraph, then the
skeleton H® of H is sequentially simple.

Proof. Assume that F(H) = {r1, ..., 7z} where0 < r, < --- <7, and
F(H®) = {r$, ..., r5,}. Suppose
E € (E®) 7+ \ (E®)7.
Then, in view of Lemma 4.23(2), it is evident that
E e E+, (4.42)

Therefore, since E+1 C E5+, it is clear that E € ET5+1. Now, as
F(H*) = F(H) is a subsequence of F(H), there exist some ri4+; € F(H)
such that

Tk+1 =T54; (of course j < k). (4.43)
Thus,

E € E™+'. (4.44)

We claim that E € E™++! \ E™*. For suppose £ ¢ E™+! \ E™*. Since E
satisfies (4.44), this assumption would imply that

E€E™, (4.45)

where 77, , < 7. However, by the way C(H) is constructed (see Construc-
tion 4.1), it would follow from (4.45) that E ¢ E™+'. This would imply,
in view of (4.43), that E ¢ E™>+: which contradicts (4.42).

With the claim established, it then follows from the hypothetical as-
sumption concerning H that £ ¢ X" (= V(H™)) which, in turn, implies
that

E g (X*)3 (= V((H®)7)) (4.46)

since
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(X5 C X7, (4.47)

where (4.47) follows from the fact that 7 < 3 (since ryi1 = rj4) to-
gether with the obvious fact that, fori =1, ..., n—1,X; = V(H) C
V(H™*!) = Xi41, and also from the method of constructing C(H) along
with the subsequent assembly of H® according to Lemma 4.23(5). From
(4.46) we have the desired result.

Theorem 4.34 If H is a sequentially simple fuzzy hypergraph, then H® =
p® ® H® with u° and H® defined in Theorem 4.82.

Proof. By Lemma 4.33, H* is sequentially simple since H is assumed to
have this property. Therefore, since H* is ordered, it is simply ordered, and
the result follows from Theorem 4.32. B

Corollary 4.35 IfH = u® H, then H® = p® ® H® with p° and H® defined
in Theorem 4.32. Moreover, if H has no repeated edges, then H* = H if
and only if H is simple.

Proof. H is simply ordered by Theorem 4.2 and therefore H is sequentially
simple. The first result now follows from Theorem 4.34. The proof of the
remaining portion of the theorem follows from the process in determining
H* (see Construction 4.1 and 4.2) and from the construction of 4 ® H as
presented in Definition 4.12. In particular, if H is not simple and without
repeated edges then there is a pair of edges F; and E; in H such that
E, C E, and there is a unique pair of elementary edges o(E;,r;) and
a(E2,79) belonging to p® H, where r; > ro > 0; this latter relation follows
easily from the following conditions:

(@) s = A {pule) |e€E;}, i=1,2,

(b) E, C E>

(c) u(e) > 0 for all e € V(H), see Definition 4.12. Therefore, in
the determination of C(u ® H), E; will be eliminated so that F5 does not
belong to H®. Therefore, H® C H, as the condition H* C H must hold.
This proves that H®* = H implies H is simple.

Conversely, suppose H is a simple crisp hypergraph with edge E: corre-
sponding to E is the unique elementary edge o(E,r) of u ® H. Since E
does not contain another edge E' of H, there cannot be another distinct
elementary edge o(E’,r’) of p & H satisfying conditions:

(c) B'C E,

do<r<r.
Consequently, E is selected in the process of determining C(y ® H). Hence
as a result E € H®. This shows that H C H®*. Thus H° = H, as it is
always true that H* C H. Thus the assertion that H* = H if and only if
H is simple is established. l
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Proposition 4.36 If H is a u-tempered fuzzy hypergraph of a crisp hyper-
graph H, that is, H = u & H, then the skeleton H® of H is a p°-tempered
hypergraph of H*, where H® is a simple crisp hypergraph. B

We conclude this section with a working example of a fuzzy hypergraph.
A fuzzy hypergraph conceptualization of a stock exchange might consider
the publicly-traded companies in the exchange as the vertices and the sec-
tors represented within the exchange as the edge set. The edge set might
include, among others, the utility, energy, financial service, technology, in-
dustrial, leisure, and health science edges. Degree of membership within
each sector could be determined by a variety of fuzzy strategies that would
accept and integrate information supplied by one or several information
sources. A portfolio (at time ¢) that includes all sectors at each level of
importance would be considered a transversal of the fuzzy hypergraph as
it exists at time ¢.

Portfolio management may utilize asset allocation stratagems which are
designed to fuzzily identify sectors from the most desirable (ties permitted,
of course) for investment at time ¢. Accordingly, under such management,
a portfolio would normally include representations from only a proper sub-
set of sectors at any given time; at such times ¢, the portfolio would, very
likely, represent a transversal of a (proper) partial fuzzy hypergraph or, per-
haps, of a suitably scaled partial fuzzy hypergraph. Scaling would occur,
for example, if the degree of overall strength of each sector, as determined
by asset allocation analysis, were utilized to reassign the degrees of mem-
bership within each edge as specified by some fuzzy logic procedure.

Using the above strategy, a well-designed minimal portfolio of stocks
(within the exchange) would, most likely, represent a minimal fuzzy transver-
sal of some determined (perhaps scaled) partial fuzzy hypergraph.

4.3 Coloring of Fuzzy Hypergraphs

A k-coloring C of a crisp hypergraph H = (X, E) is a partition {S, ..., Sk}
of X into k subsets (colors) such that each edge E € E with cardinality
> 2 intersects at least two of these subsets. That is, each edge which is
not a loop (singleton edge) contains at least two of the k-colors. We now
extend the concept of k-coloring to fuzzy hypergraphs. The first fuzzy
extension below is trivial. It is valuable when H is elementary because it is
totally indifferent to the effects of fuzziness. The objection is rectified in
the second fuzzy extension which appears below.

Definition 4.23 Let H = (X,€) be a fuzzy hypergraph. A primitive k-
coloring (or simply a p-coloring), C, of H is a partition of X into k subsets
(colors) such that the support of each fuzzy edge of H intersects at least two
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colors of C, except for edges which are “spikes,” that is, fuzzy subsets with
singleton support.

The next definition features a coloring of the core set of H which is
accordingly termed an L-coloring of H:

Definition 4.24 Let H = (X,£) be a fuzzy hypergraph and let C(H) =
{H™,H"™,...,H™"}. An L-coloring, C, of H with k components is a par-
tition of X mto k subsets {S1,...,Sk} such that C induces a coloring for
each core hypergraph, H™, of M, that is, with H™ = (X;,E;), the restric-
tion of C to X;,{S1 N Xi,..., Sk N X}, is a coloring of H™. (We allow a
color set S; to be empty.)

It is clear that an L-coloring of H is a primitive coloring of H. However,
as the next example shows, the converse is not generally true.

Example 4.9 Suppose = (X,E) is a fuzzy hypergraph and C(H) = {H™,
H™,...,H™}, where 0 < r, < --- < ry. Assume the core hypergraph
H™ = (X,,E,) is simple, and that there is an edge S of some core hy-
pergraph H™, with cardinality |S| greater than one, which is not an edge
of H™. Then S is the ri-cut of some fuzzy edge v. Thus S=um s an
edge of H™ and S C S. Since H™ is simple, it follows that E \ S£0
for every E € E,\ {S}. Hence E \ S # 0 for each edge E € E,.
Assign the color blue to each s € S. Let C' be a coloring (excluding the
color blue) of the crisp hypergraph on X, \ S whose edges consist of all
sets of the form E \ S where E € E,. Finally, let C be the coloring of
H™ that coincides with C' on X, \ S and assigns the color blue to each
s €S. Then C is a primitive coloring of H, but not a coloring of H™ when
restricted to X™:. For ezample consider the fuzzy hypergraph H = (X,€),
where X = {a,b,c} and & = {u, v} such that p(a) = p(b) = p(c) =0.4 and
v(a) = v(b) = 0.9,v(c) = 0. We have that H™ is simple. There exists an
edge of S of H™ such that |S| > 1 and S ¢ E3, namely S = {a,b}. Now
S =y ={a,bc},SC S By ={{a,b,c}} and E\ S # 0,VE € Ez \ {§}.
We assign the color blue to a and b. Let C' be a coloring ezcluding blue on
X2\ S ={c}. Let C be the coloring of H™ that coincides with C' on X, \
S, say red on {c} and blue on {a} and {b}. Then C is a primitive coloring
of H because supp(p) = {a,b,c} and {a,b,c} N C intersects two colors of
C, but is not a coloring of H™ when restricted to X . That is, C is not a
L-coloring because when C is restricted to X, = {a, b}, it is not a coloring
of H™. Note that H is not ordered.

Under certain conditions primitive colorings and L-colorings of H coin-
cide. The next theorem gives an example of such a condition.
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Theorem 4.37 If H = (X,£) is an ordered fuzzy hypergraph and C is a
primitive coloring of H, then C is an L-coloring of H. M

The next result is a partial converse of Theorem 4.37.

Theorem 4.38 Let H = (X, &) be a fuzzy hypergraph and suppose C(H) =
{H™ | i =1,2,..., n}, where 0 < 1, < --- < 7. If H™ is a simple
hypergraph and singleton edges do not appear in any core hypergraph of H
and if each primitive coloring C of H is an L-coloring of H, then H is an
ordered fuzzy hypergraph.

Proof. Recall that H™ = (X;,E;) for 1 < i < n. Assume H'™ is simple
and that H is not ordered. Then there exists a primitive coloring of H
that is not an L-coloring of H which is constructed as follows: Since H
is assumed not ordered, it can then be assumed that there is some core
hypergraph H™, where i < n — 1, such that some edge S of E; is not an
edge of E;4;. From the definition of core hypergraph, if follows that there
is a fuzzy edge v € £ such that v™ = S. Let § ="+ and T = v™. Then,
S c §CT. Since H™ is simple and T € E,, it follows that S ¢ E,;
moreover, by hypothesis, |S| > 2. This is precisely the situation described
in Example 4.9, therefore, there is a primitive coloring of H that is not an
L-coloring of H. M

If prediction is necessary in a problem, L-colorings of suitable fuzzy hy-
pergraphs may provide an avenue toward analysis and resolution of the
problem. Consider the following problem: Stability within high-tech fields
is problematic as rapidly emerging technologies and applications compete
with established methods and practices for dominance within such fields;
as a result, obsolescence and incompatibilities between existing and emerg-
ing technologies and services are commonplace. Survivability, even for the
largest players, demands awareness of emerging trends and, therefore, play-
ers must plan and adapt accordingly. From this viewpoint, the study of
possible colorings of relevant fuzzy hypergraphs may assist in identifying
fuzzy groups of existing and emerging technologies and services which are
fuzzily compatible for the fuzzy foreseeable future.

For example, assume H = (V, £) is a fuzzy hypergraph, where V is either
a crisp or fuzzy subset p over a groundfield X of existing and emerging
technologies and applications within one or more sectors of the economy
and where the support set,

E ={E C supp(V) | E = supp(v), v € £},
of £ contains all minimal incompatible subsets of supp(V) (i.e., with out
loss of generality it is assumed that E is a simple crisp hypergraph over
supp(V) ). With the establishment of E, one method to determine £
would be to first determine a fuzzy subset w : E — (0, 1], where degree of
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membership, w(E), indicates the degree of incompatibility for each E € E;
once established, w could then be combined with the fuzzy vertex set pu,
via a determined fuzzy logic process, to obtain the fuzzy edge set £ of H.

The “colors” of the £-colorings would provide a collection of fuzzily com-
patible groups of technologies and services which could then be compared
and critiqued by a player for acceptability or rejection with respect to the
player’s goals and objectives.

We note that to simplify the above presentation it was tacitly assumed
that every member of E should have cardinality > 2 and that the union of
all members of E should be supp(V). However, one could easily envision
the possibility that some members are compatible with all members of
supp(V); in such cases the corresponding spikes, o({a}, pu(a)), would be
desirable additions to the edge set £ considering the fact that their supports
could belong to any desired color in a valid coloring of H (with membership
value p(a), see concluding remarks in this section).

In the example to follow, we consider another way to interpret a col-
oring of a fuzzy hypergraph. We partition the set X of companies into
sectors of compatible or similar companies, e.g., airlines. The partition is
held fixed and we are interested in the intensity with which the partition
is an L-coloring of the fuzzy hypergraph (X, &), where members of £ de-
note technological companies which supply support to the members of X
and whose membership may have any number of interpretations depending
upon the problem.

Example 4.10 Consider the hypergraph H = (X,€) where X = {a,b, ¢,d,
e, f} and & = {p,, o, p3}, which is represented by the following incidence
matriz:
K1 H2 Hg
09 0.7 07
09 09 04
07 0 09

0 0 09
04 04 O
04 07 O

Then the core hypergraphs are as follows:

HO® = ({a,b,c,d}, {{a, b}, {b}, {c.d}})

H%" = ({a,b,¢,d, f}, {{a,b,c},{a,b, f},{a,c,d}})

H% = ({a,b,c,d,e, f},{{a,b,c,d,e, f},{a,b,e, f}{a,b,c,d}})

Suppose that the partition of X of interest is C = {{a, b}, {c,d},{e, f}}.
Then C is a coloring of H*7 and H%4, but not of H*®. Hence we conclude
that C is an L-coloring of H with intensity 0.7.

- 0 A0 o

The chromatic number x(H) of a crisp hypergraph is the minimal num-
ber, k, of colors needed to produce a k-coloring of H. A trivial extension
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of the crisp definition of a chromatic number (given below) can be useful
for certain fuzzy hypergraph problems; however, it is insufficient for a va-
riety of other questions. For this reason important non-trivial extensions
of chromatic numbers appear later.

Definition 4.25 The p-chromatic number of a fuzzy hypergraph H = (X, E)
is the minimal number x,(H), of colors needed to produce a primitive col-
oring of H. The chromatic number of H is the minimal number, x(H), of
colors needed to produce an L-coloring of H.

The following result is easily established:

Theorem 4.39 If H = (X,£) is an ordered fuzzy hypergraph and C(H) =
{(H™ |i=1,2,...,n}, then x(H™) < x(H™) < --- < x(H™) = x(H),
where x(H™) represents the minimal number of colors required to color the
crisp hypergraph H™. R

However, there is no general outline for the sequence of chromatic num-
bers attached to core sets. This can be seen by comparing Theorem 4.39
and the next example:

Example 4.11 Suppose H = (X, &) is the fuzzy hypergraph where X =
{a,b,c,d,e, f} and £ is determined by the incidence matriz
Hy Mo M3 M4 Hs He K7 Hg Hg9 FHio
09 09 09 09 09 09 0O O O O
09 09 09 0 O 0 09 09 09 O

0 0O 009 09 09 09 09 09 O
04 0 004 O 004 O 0 04

0 04 0 004 O O0O04 0 02

0 004 0 O O0O4 0 O0 04 02

Clearly, C(H) = {H™ = (X;,E;) | i =1, 2, 3}, where r; =0.9, rp = 04,
r3 = 0.2, E; = {{a,b}, {a,c}, {b,c}}, E2 = {{a,b,d}, {a,b,e}, {a,0, f},
{a,c,d}, {a,c,e}, {a,c, f}, {b,c,d}, {b,c,e}, {b,c, f}, {d}}, and E3 = (EoU
{d,e, f}) \ {d}. Consider H™ . Suppose {S1, S2} is a coloring of H™. Then
{a,b}NS; # 0, {a,c}NS; # 0@ and {b,c}NS; # 0 fori =1,2. Hence S;NS2 #
0 a contradiction. Thus x(H™) = 3. We have that {{a,b,c}.{d,e,f}} isa
coloring for H™ and so x(H"™) = 2. For H™, we see that for E C X such
that |E| = 3, either E or its complement is in Es. This fact can be used in
the argument that x(H"™) = 3.

- 0 A0 OB

The search for optimal colorings (for example, discovering a coloring with
minimal chromatic number) can be complicated by the added dimension
of fuzziness. Consider a hypothetical situation concerning managerial de-
cisions of possible future events. The results of the process may produce
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a fuzzy hypergraph where an efficient top-down L-coloring is desired - it
is conceivable that management would like to obtain an optimal coloring
of the present situation represented by the core hypergraph H™ and post-
pone coloring future core hypergraphs, until it is absolutely necessary to
do so. However, a top-down method of coloring the core set generally does
not work well if at all (except in special cases, some of which may appear
among the p ® H hypergraphs). On the other hand, if management is
committed “long term” and the required “speculative” analysis is carefully
crafted so that the resulting fuzzy hypergraph H is “realistic,” then, with
this extended fuzzy knowledge, there are effective coloring methods for use
in long term analysis, but may necessarily be less than optimal in coloring
H™'. One “long-term” coloring procedure centers on the idea of replacing
‘H by a simpler structure similar to H° as described previously. An ad-
vantage is that H?® is ordered. Therefore, by Theorem 4.37, any L-coloring
is equivalent to a primitive coloring of H° and thus a crisp hypergraph
coloring problem. Usually, in coloring problems, the conversion from H
to H® cannot be done directly since, in the (-)* procedure, edges in H
which are not spikes may be replaced by representatives which are spikes
in H*. Generally, spikes are not significant in coloring problems since their
supports are singletons; therefore, colorings of H* may not be relevant to
colorings of H. To avoid this situation, first remove all spikes and all
terminal spikes from edges of H before applying the (-)° procedure. The
conversion procedure is expressed explicitly as follows:

Definition 4.26 A spike reduction of 1 € Fp(X), denoted by u~, is de-
fined by p~(x) = V{r | |u"| 2 2,7 < u(z)}, where VO =0.

In particular, if 4 is a spike, then u~ = x4.

Definition 4.27 Let H = (X,€) be a fuzzy hypergraph and let H~ =
(X~,&7), where £~ ={p~ |p€€} and X~ = léJ£ supp(p~).
u-ce-

In Example 4.11, (p0)%* = {d}. Hence up(a) = pig(b) = pplc) =0
and pig(d) = pipe) = pip(f) = 0.2. We see that 1, # i, Since uig # 0,
K10 is not a spike.

If each edge of H is a spike, then £~ = @ (i.e., H™ is not a fuzzy hyper-
graph). This special case has no real coloring problem associated with it,
so we exclude it from further consideration and always assume M~ exists.

Definition 4.28 Let H® denote the skeleton of H™; that is, H® = (H™)®.

Theorem 4.40 For each fuzzy hypergraph ‘H for which H~ ezists, every
primitive p-coloring of H® is an L-coloring of HA and conversely.
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Proof. Since H2 is an ordered fuzzy hypergraph, the result follows from
Theorem 4.37. W

Definition 4.29 Let H, = (X1,&1) and Hp = (X2,&2) be a pair of fuzzy
hypergraphs such that X, C Xo. Suppose Cy = {S1, Sa,...,Sk}, where
Uk, Si=X1,andS; #0, fori=1,..., k, is an L-coloring (or p-coloring)
of Hy. Then Cs is a stable L-coloring (or p-coloring) extension of C; to
Ho if Ca = {8}, .S';, el S;c} is an L-coloring (or p-coloring) of Hy which
satisfies

(1) Uf=1‘s‘: =X2:
(2) S; CS; fori=1,..., k.

The proof of the following theorem follows from the construction of HA,

Theorem 4.41 Suppose that H = (X,£) is a fuzzy hypergraph and that
‘H~ exists. Then every L-coloring of H is a color stable extension of some
L-coloring of H2. Conversely, any L-coloring of H® which is extended in
any manner that does not introduce another color is a color stable extended
L-coloring of H.

Example 4.12 Consider the fuzzy hypergraph H of Ezample 4.1. Then
H~ = H and so H® = H*. Now H*® is given in Example {.7. We see
that every L-coloring of H is a color stable extension of some L-coloring
of HA. In fact every L-coloring of H® is an L-coloring of H since E; =
{{av b}, {a>c}} =Ej, E} = {{a:b}! {b,c}, {a,c,d}}, and Ep = E;U{{a., b, d}’
{b,c.d}}.

Theorem 4.42 Let H = (X,£) be a fuzzy hypergraph for which H™ ez-
ists. Then each L-coloring of H is a stable extension of some p-coloring
of HA. Conversely, each p-coloring of H®, where all colors are assumed
to be non-empty, can be extended to a partitioning of the verter set of H
in any manner which does not introduce a new color and the result will be
a stably extended L-coloring of H.

Proof. The proof follows from the construction of H2 and Theorem 4.40. I

Theorem 4.42 makes it clear that the development of £-colorings of H
can be reduced to the problem of finding primitive p-colorings of H2, which
can be labor saving. However, it should be noted that colorings of H® may
not be relevant to colorings of H for, in the procedure to determine H?,
edges in H which are not spikes may be replaced by representatives which
are spikes in H®. We illustrate this in the following example.
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Example 4.13 Let H = (X,€) be a fuzzy hypergraph of Ezample 4.10.
Then it follows that H® = (X°,E°) where X* = {b,c,d} and E&°
= {o({b},0.9),0({c,d},0.9)}. Hence {{b,d},{c}} and {{b,c},{d}} are L-
colorings of H°. Clearly the chromatic number x(H*®) = 2. Note the cre-
ation of the spike o({b},0.9) in H®*. We now consider the spike reduc-
tion in H. We have H~ = (X—,£7), where X~ = {a,b,c,d,e.f} and
E~ = {p1, 11,11 } which is represented by the following incidence matriz:
B M2 M3
09 0.7 04
09 0.7 04

0 0 09

0 0 09
04 04 O
04 04 O

Thus (H™)%° = ({a,b,¢,d}, {{a,b},{c,d}}) = (H™)%7 and (H™)%4 =
({a, b,c.d,e, f}»{{a’b7e’f}’{aa b, c, d}}) Then HA = (H-)s = (XA:SA):
where X2 = {a,b,c,d} and €4 = {0({a,b},0.9),0({a,b},0.9)}. Hence
{{a,c}, {b,d}} and {{a,d},{b,c}} are L-colorings of HA. Clearly x(H”) =
2.

“\ ® A0 O

C. Berge gives an interesting example of a waste management problem
in [2, p.115]. We extend this problem and place it within the context of
fuzzy hypergraphs. The following example also illustrates the usefulness of
¢ ® H within the theory of fuzzy hypergraphs.

Example 4.14 Suppose that waste management is required to design a
long-term cost efficient system of disposal sites for chemical waste by-
products produced by a chemical plant. It is required that hazardous combi-
nations of stored waste products should never be stored together. Suppose
also that the design of waste sites for present needs should be highly adapt-
able to future augmentation as new waste by-products are produced. We
show how a fuzzy hypergraph can be used to illustrate essential features of
the problem.

Assume that the directors of the plant have made best educated guesses
regarding future production possibilities. Let X represent the set of chemical
waste by-products now being produced together with those which may be
produced in the future and let u be a fuzzy subset of X that gives the degree
of possibility of producing each waste by-product in X. Those currently
being produced have degree 1 of possibility.

In addition, let H = (X, E) be the (crisp) hypergraph where the collection
of hazardous combinations of waste by-products forms the edge set E. For
simplicity, it is assumed that no edge of H is a singleton. H = p® H
functions as model for representing the fuzzy context of this ezample.
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FEvery k-coloring {S1, ..., Sk} of H™, where C(H) = {H™, H™,
H™} is the core set of H and 1 = 1, is a possible solution for the current
waste disposal problem where each dump site collects only those by-products
that belong to a particular set S;. The longer viewpoint where future dis-
posal requirements are also considered leads naturally to consideration of
L-colorings associated with H = p ® H.

Consider the p-tempered fuzzy hypergraph H given in Ezample 4.2. Con-
sider also a,b,c,d as waste products where the members of E®4, {a, b}, {a, c},
{b,c}, and {b,d} yield hazardous waste combinations. It is easy to deter-
mine that x(H) = 3 and {{a,d}, {b},{c}} and {{a}, {b}.{c,d}} are the
only 3-colorings of E%4. In this fuzzy hypergraph environment, a number
of basic questions related to L-colorings can be considered:

(i) What is the value of x(H)?

(i) How can a minimal L-coloring of H be constructed?

(#i) Do certain structural attributes ezist which, if satisfied , guarantee
that k-conservative colorings of H™ (to be defined later) can be extended
color stably to L-colorings of H?

(iv) Can fuzzy chromatic evaluations of L-colorings be designed to
distinguish among acceptable colorings, those which are superior in a spe-
cific criterion (or criteria) such as a long-term cost effective strategy for
developing waste disposal sites?

As previously shown, H® can be used to reformulate questions (i) and
(ii) into related questions involving crisp hypergraphs. Questions (iii) and
(iv) will be examined in succeeding sections.

Before examining Questions (iii) and (iv), we consider the following
question: How sensitive is p in the formulation of H = p ® H? There
may be other fuzzy subsets v which satisfy vQ H = p® H (or Cw® H) =
C(p® H)). Such inquiries lead to the following definitions concerning the
relationship between the members of Fp(X).

Definition 4.30 Two fuzzy hypergraphs HY) and H® are said to be C-
related, if they are sequentially identical; that is, if the fundamental se-
quences, F(H®) = {r(') li=1, ..., n} withr > > ... > 70

and i = 1 2, have zdentzcal length n and for j =1, 2, ..., (H(l))"m =

(H®)3” | where (HOYS” € C(H®),i =1,2.

Definition 4.31 Two fuzzy subsets p, and p, on X are said to be H-
related with respect to a crisp hypergraph H on X if uy ® H and pp, ® H
are C-related. In addition p, and p, are said to be identically H -related
'l:f#l ®H=l£2®’H

Clearly, H-relatedness and identically H-relatedness are equivalence re-
lations in Fp(X).
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We note that the H-related equivalence class containing the fuzzy subset
p described in the above example would reveal alternative fuzzy hypotheses
generally compatible with waste management decisions based upon p® H.

3-degree Coloring Procedures

Finding x(H) for crisp hypergraphs is a highly nontrivial problem. Using
3 degrees and a step-by-step coloring of the vertices, Berge establishes a
valuable upper bound for x(H). We use Berge’s technique to partially
answer Question (iii), which was raised on the previous page.

We begin our study by reviewing some essential definitions and a basic
theorem that appears in (2].

Recall that, in a crisp hypergraph H = (X, E), the star in H of a vertez
zistheset H(z) ={E € E|z € E}.

Definition 4.32 Suppose H = (X, E) is a crisp hypergraph. Letz € X. A
By-star of x, denoted by HP(z), is a subset of the star, H(x), of = such
that

(1) if E € H%(z), then |E| > 2;
(2) if E,E' € H%(z), then ENE' = {z}.
The 3, degree, d5 (), of z is defined by dy(z) = V {|H?(z)| | H#(z)

is a B -star of x},where |HP(z)| denotes the number of edges in H%(z).

Note that if a vertex = has no 3y-stars, then df,(a:) =0.

The symbols A?(H) and 6°(H), defined by

AS(H) = v {df(2) |z € X}

and

8°(H) = A {dfy(z) | z € X},

represent the marimum and minimum Bg-degree of H.
Definition 4.33 Let H = (X, E) be a crisp hypergraph and let A C X. The
partial hypergraph, H/A, of H circumscribed by A is defined by the edge set

E(H/A) = {E € E(H) | E C A}. H/A is said to be filled if A= U{E | E
€ E(H/A)}.

Clearly H/A in Definition 4.33 has vertex set _ U
E€E(H)

Example 4.15 Let X = {a,b,c,d,e, f} and E ={E,, E;, E3,Es}, where
E) = {a,b},E; = {a,c}, E3 = {a,d,e} and E4 = {a,d, f}. Then the (crisp)
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hypergraph (H.E) is the star H(a). The By -stars of a with 2 or more el-
ements are {Ey, Ea}, {Ex, Es}, {Ev, Ea}, {E2, B}, {Ez, Ea}, {Er, Bz, B},
and {E,, Es, E4}. Hence d?(a) = 3. It is clear that AP(H) = 3 and
68(H) = 1. Let A = {a,b,c}. Then H/A = ({a,b,c},{E1, E2}) and we
see that H/A is filled.

To establish some fuzzy coloring results related to the next theorem, we
provide a slightly modified version of Berge’s proof of the following result.

Theorem 4.43 (Berge). If H = (X, E) is a crisp hypergraph, then x(H) <
v {°(H/A)|AC X} +1.

Proof. We first fy-order X; assume | X| = n.
Step 1: Select a point z; in X, such that

d5(z1) = 6°(H).
For k¥ < n, assume zj, ..., Zx—1 have been chosen. Let Ay = X \
{:l:l, ey .’L‘k_l}.
Step k: (i) If H/A exists (i.e., {E € E| E C A} # 0}), choose a point
z) in the vertex set, V(H/Ag), of the partial hypergraph H/Aj such that

dr/a(z) = 8°(H/Ag).
(i) If H/A; does not exist, label the (n — k + 1) members of Ag: zy,

ZTk41, ---, T in any order. This completes the G-ordering of X.

Suppose the algorithm terminates in case (ii) of step k. Then Ax =
X\{z1, ..., Tk_1} contains no edge of H. In this case, let Rf,(X) denote
an arbitrary ordering {zx, Tk+1, ..., Tn} Of A. Let Q‘;(X ) represent the
linearly ordered set {z;, ..., zx—1} determined by the previous (k — 1)-
steps of the 3 -ordering algorithm. We let

LE(X) = Q4(X) + R(X)

denote the §y-ordering of the vertices of X. Observe that if R?,(X ) =0,
case (ii) did not occur at any step in the execution of the algorithm.

Now we color the vertices in X step by step in reverse 8 -ordering, start-
ing with z,,. We assume without loss of generality that R2 (X) # 0 and
Q%(X) = {z1, ..., k-1 }. First, one color is used to color R%(X). Next
assume the set of vertices {z;y1, Tit2, Zit3, Tx—1} In Q%(X ) have been
colored so that each edge in H that has been fully colored, and is not a loop,
has at least two colors. To color z; we consider the edges of (H/A;)(z:)
(the edges of H(z;) contained in A; = X \ {z1, ..., zi—1})- These edges
have been totally colored except for vertex z;. We need to color z; so that
each edge in (H/A;)(z;), which is not a loop, has at least two colors. We
now determine if we need a new color for z;, or can we use a color already
used.
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If every non-loop member of (H/A;)(z;) contains at least two differently
colored vertices distinct from z;, then z; can be colored with any existing
color (color already used). Suppose then that some edges of (H/A;)(x;) are
monochromatic (if z; is excluded). Since any two such edges with different
colors have only z; in common, we claim that the number of different colors
appearing among the monochromatic edges (excluding z;) of (H/A;)(x:)
is less than or equal to &° (H/A;). To see this, consider the following
argument. Let M(z;) be a an arbitrary subset of the subset of edges of
star H/Ai(z;) which have been colored monochromatically (excepting z;
which is still uncolored) wherein M(z;) satisfies the property that each
edge of M(z;) exhibits a different (monochromatic) color. Clearly, M(z;)
is a (-star of z; in hypergraph H/A;. Thus,

M ()] < dfy 4, () = 6°(H/A),

where dg/ 4,(zi) is the B4 -degree of z; in the hypergraph H/A; and
6P(H/A;) is the minimal 8y /a,-degree of H/A;; the above equality follows
from the algorithm used to By-order X. Consequently, the above claim
is established. Hence, we conclude that if at least §°(H/A;) + 1 colors
have already been used to color = X \ {z1, ..., z;}, then no new color
is required to color z; appropriately. Consequently, a simple inductive
argument is now obvious. ll
We illustrate the proof of the Theorem 4.44 in the following example.

Example 4.16 Let H = (X,E) be the hypergraph in Example {.15.

Step 1: 8°(H) = 1. df,(f) =1. Let z; = f.

Step 2 (i): Aa = X \ {f} = {a,b,c,d,e}. H/A; ezists. V(H/A2) = A,.
Now §°(H/A2) = 1 = dyy/a,(e). Let zo =e.

Step 3 (1): A3 = X \ {e,f} = {a,b,c,d}. H/A3 exists. V(H/A3) =
{a,b,c}. Now §°(H/A3) =1 = dyya,(c). Let z3 = c.

Step 4 (i): As = X\{c,e, f} = {a,b,d}. H/A4 ezists. V(H/A4) = {a, b}.
Now 6°(H/As) =1 =dp4,(b). Let x4 =b.

Step § (i): As = X\{b,c,e, f} = {a,d}. H/As does not ezist. Let x5 = d
and r¢ = a. Now As contains no edge of H. R%(H) = {z5,24} = {d,a}
and QFy(H) = {z1,22,23,24} = {f,e,c,b}.

Color a,d red. Now color b blue. E, is fully colored with two colors. Next
consider ¢ = z3. (H/A3)(z3) = {{a,c}}. 6°(H/A3) + 1 = 2 colors have
already been used to color X \ {f,e,c}. Hence no new color is required to
cover c¢. Continuing in this manner we also see that no new color is needed
to color e and f. We have x(H) =2=1+1=V{§°(H/A)| AC X} + 1.

The following example from [11] is another example where the upper
bound of x(H) in Theorem 4.43 is obtained by x(H). For instance, consider
the binary graph G with 5 vertices and 10 binary edges as depicted in the
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FIGURE 4.1 The upper bound of x(H) is obtained by x(H).

diagram given in Figure 4.1. Clearly the chromatic number x(G) = 4 while
V{6°(G/A)| AC V(G)} =3.

Remark 2. The phrase (3-degree coloring method, shall denote the col-
oring method just described. With respect to this coloring method an
important point to remember is that if §°(H/A;) is less than the number
of colors used to color A;,, then no new color is needed to color z;. More
specifically, if i < 7 and 6°(H/A;) < 6°(H/A;) and at least 6°(H/A;) +1
colors have been used to color A;;;, then some color already used to color
A; 41 can be used to color z;.

Definition 4.34 Any k-coloring of H = (X, E) which uses no more than
V{6P(H/A) | A C X} +1 colors is called a conservative coloring (or a
conservative k-coloring) of H.

According to Theorem 4.43, a k-coloring of H by the ($-degree coloring
method is a conservative coloring of H.

A conservative coloring of H that uses precisely V{6°(H/A) | AC X} +
1 colors is referred to as a mazimum conservative coloring (or simply a
conservative k-coloring) of H.

The main fuzzy results of this section depend upon the crisp material
already presented and upon the following definitions and lemmas. In the
definitions to follow, we assume H is a crisp hypergraph on X and B is a
non-empty subset of X.

Definition 4.35 The star of B in H, denoted by H(B), is the partial hy-
pergraph of H defined by H(B) = U{H(z) | € B}, where H(z) denotes
the star of z in H. Let

6°(HMB) = A{d%(z) |z € B},

AP(HEB) = v{dy(z)|z € B}.

Lemma 4.44 d%(B)(:z;) = d%(z), Vz € B and 6°(H(B)) < 6°(HMB) <
AS(HEB) < AB(H(B)).
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Proof. From the definition of H(B), we have for every £ € B that
H(B)(z) = H(x). Hence,

de(B)(x) = df,(z), Vz € B.
Moreover, since B C V(H(B)), it follows that

§°(H(B)) < 6°(HMB) < A®(HEB) < AP(H(B)). B

Definition 4.36 Let |B| = m. A 3y-ordering of B, denoted by L%(B),
is a linear ordering of B determined by the following algorithm:

Step 1: Select z; in B such that
d3(z1) = 6°(HMB).
For k < m, assume z,, ..., Tr—) have been selected from B. Let A; =
X\{zl, ey $k_1} and Bk =B\{.’El, pa ey :Ek_l}.
Step k: k(i) If H/Ay exists, and By, = V(H/Ax) N Bx # 0, then choose
zx in By, such that
dfy 4, (zx) = 8°(H/ABBY) = A{d}} . (z) | = € By}.
k(i1) If H/Ax does not exist or B;, = @, label the (m — k + 1) members of
By: x, Tk+1, - -, Tm in any order. This completes the 3-ordering of B.

Often it is useful to decompose L%(B) into an ordered sum

L (B) = Q5(B) + RE(B),
where Qg (B) represents a linear ordering of those members of 8 which are
selected recursively first by step 1 and then by step k(i) of the algorithm
in Definition 4.36, and where R%(B) represents an arbitrary, but fixed,
ordering of the remaining members, if any, of B which satisfy the hypothesis
of step k(ii) of the algorithm in Definition 4.36.

Remark 3. Suppose that {z1, ..., zk—1} C B. If By # 0, then the
edges of H(B) that are contained in Ay = V(H) \ {z}1, ..., zk_1} are
precisely the edges of H(B) that are contained in

AP =V(HB)\ {1, ..., Tx-1}.

Thus it follows that the edges of H(B)/AP are precisely the edges of
H(B) that belong to H/Ay.

Hence

By = V(H(B)/AB)N By = V(H/Ai) N B, = B,

and, for every z € By,
6

p/a,(2) = dg(B)/AE (@)-

Therefore,

8°(H/ABBY) = 6°(H(B)/AEmBY).

Thus every B py-ordering of B is a (y-ordering of B and conversely.
In addition, since dg( B)(z) = d‘,’,(:r) for all z € B, it follows that

6°(H(B)mB) = §°(H®B)
and
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AP(H(B)EB) = AP(HEB).

Certain results which appear later coordinate more than one application
of the B-coloring method as described in the proof of Theorem 4.43. To
arrange such matters effectively, a relaxed (f-degree coloring scheme is
introduced through the following algorithm.

Algorithm 4.3. Let

MH(X) = (xlv T2y « - vy In)
be a linear ordering of X(= V(H)). The vertices of H are colored se-
quentially in reverse H"(X)-order. We begin coloring z,, arbitrarily. We
then continue according to the following recursive rule which is directed by
Mpy(z):

Rule M. Suppose the vertices Cit1 = {Zn, Tn—1, ..., Tit1} have al-
ready been colored so that no nonsingleton edge of H contained in Cj4;
is monochrome in color. Suppose also that we are ready to color z;. Let
C; = Ciy1 U {z;} and consider the star, (H/C;)(z;), of z;, the edges of
which belong to hypergraph H/C;. If this star does not exist or if each
nonsingleton edge of (H/C;)(z;) already exhibits at least two members with
different colors, then color the vertex point z; with any existing color (used
in coloring Ci4+1). On the other hand if there are nonsingleton edges of
(H/C;)(x;) which are monochrome in color (except for z;, which has not
yet been colored ) and the set of colors used to color them is less than the
set of colors which appear in the coloring of C;;, then color z; with one
of the existing colors in C;4; so that all nonsingleton edges in (H/C;)(z;)
have at least two colors. However, if the number of colors among the mono-
chromatic colored edges, excepting z;, in (H/C;)(z;) equals the number of
colors already used in coloring Cj41, then z; must be colored with a new
color (i.e., a color that does not appear in the coloring of Ciy ).

Note that if Algorithm 4.3 is directed by a §y-ordering of V(H), then
the result is a coloring that can be reproduced by the f3-degree coloring
method as described in the proof of Theorem 4.43.

Definition 4.37 A linear ordering, My(X), of X = V(H) is called a
conservative ordering of X if when applying Rule M in Algorithm 4.3, this
ordering yields a conservative k-coloring of H.

Definition 4.38 Let H(X,E) be a crisp hypergraph on X and let {Y;, Y2}
be a nontrivial partition of X. Suppose a k-coloring, K1, of H/Y, is ezx-
tended to a full k-coloring, K, of H, where the total number of new colors
tntroduced to k-color H does not exceed OV (Ry — |Ky|), where ko = 1+
V{6P(H/[X \ A|MY2\ A) | A C Y2} and |K,| represents the number of
colors in K;. In this case K is called a weakly conservative k-coloring
extension of K to H with respect to Y2 (or simply, a weakly conservative
k-coloring of H with respect to Y2). On the other hand, if a k-coloring,
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K,. of H\ Y1 is extended to a full k-coloring, K, of H where the total
number of new colors introduced to color H does not exceed 0V (kg — | K |),
where ko = 14+ V {8P(H/[X \ A]) | A C Y2}, then K is called a strongly
conservative k-coloring extension of K to H with respect to Y2 (or simply,
a strongly conservative k-coloring of H with respect to Y2 ).

Lemma 4.45 Let Y7 be a proper subset of X. Assume H = (X,E) is a
crisp hypergraph on X and K, is a conservative k-coloring of H/Y,. Then
a strongly conservative k-coloring extension of K; to H with respect to
Y, = X \ Y1 is a conservative k-coloring of H.

Proof. From the hypothesis and Definition 4.34,
|Kq1| < 1+ V{6°([H/Y1]/A) | A C V(H/Y))}
=1+ V{8°(H/A) | AC V(H/Y1)}
=1+ V{6P(H/A) | AC Y } = k1.
Let K be a strongly conservative k-coloring extension of K; to H with
respect to Yo = X \ Y;. Then, by Definition 4.38,
|K| < |K1] +0V (A2 — |Ka)
= |K1| VK2 € K1 VK2
<1+ V{6°(H/A)| A C X},
since
k1 =14+ V{°(H/A) | AC Y3},
and
ko =14+ V{SP(H/[X \ A) |AC Y2 = X\ 11}.
Therefore, by Definition 4.34, K is a conservative k-coloring of H. ll

Definition 4.39 Let H, = (X;,E) be a crisp hypergraph on X;, where
X1 C X. Then, a post-extended By -ordering of X, written L%l (X),isa
ling%r ordering of X expressed by the ordered sum

L, (X) = L, (1) + S5, (X \ Xn),
wheze

Ly (X1) = Qﬁ’{l (X1) + R?;, (Xx1)
i a By, -ordering of X, (see Definition 4.36) and S%l (X \ X1) is an arbi-
trary, but fired ordering of X \ X,. Alternatively, f,f’,l(X ) is the ordered
sum

s ~ -,

Ly, (X) = Qfy, (X) + RE, (X),
whgr;ae

QH] (X) = Q%l (X)7
and

R7, (X) = RE, (X)) + 8%, (X \ X1). _
A pre-extended [y, -ordering of X, writtenL‘;,l (X), is expressed by
thg_ggdered sum
L, (X) = 8%, (X \ X1) + L (X1)
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or, alternatively, by the ordered sum
L5, (X) = 8% (X \ X1) + QF, (X1) + RE, (Xu).

In the above definition, if X; = X, then L% (X) = L% (X) = L% (X).

Lemma 4.46 Let H = (X,E) be a crisp hypergraph on X and assume
{Y1,Y2} is a non-trivial partition of X with |Y1] = ny, |Y2| = n2 and
|X| =n=mn;+ne. Let My(X) be a linear ordering of X that corresponds
to the partition {Y1,Y2} such that My(X) is the ordered sum
—

Mu(X) = LE(Y2) + LY, (Y1),
where

L% (Y2) = {21, ..., Zn,}
is a By-ordering of Y, (see Definition 4.36) and

L ?{/yl (},1) = {In2+la ceey xn} = Sg/y1 (}II\V(H/YI))*‘L?{/Y' (V(H/},l))
is a pre-extended By /v, -ordering of Y1 (see Definition 4.39) wherein

Sty A VH/Y)) = {Znyt1s -, Tnprahs
Y1\ V(H/11) #0,
is an arbitrary, but fized, ordering of Y1\ V(H/Yy) and LY\, (V(H/Y1))
is a By y, -ordering of the vertex set V(H/Y1) expressed in the form:

Ly (V(H/Y1) = {Zngtsrs s 2a)
provided V(H/Y1) # O, if H/Y: is filled (see Definition 4.33), then s =0
and Y1\ V(H/Y;) = 0.

Then, My(X) satisfies the following properties:

Property (i). A k-coloring of H determined by Algorithm 4.3 under the
direction of My (X) wrll use at most k1 V kg colors, where

K1 =1+ V{6°(H/A) | AC Y1}

and

ko =1+ V{6P(H/[X \ AIlY2\ A) | A C Ya}.

Property (ii). Every k-coloring, Ky, of H/Y) that is ertended to a k-
coloring of H by Algorithm /.3 under the direction of the ordered sum

L (Y2) + 85,y M\ V(H/Y1)) = {21, ..., Ty, -+, Tngrs}  (4.48)

15 a weakly conservative k-coloring of H with respect to Y2 (see Definition
4.38). In particular, suppose K, is a k-coloring of H/Y, which satisfies
|K1| > k2, where |K| represents the number of colors in K, then no fur-
ther colors are required to extend K to a k-coloring of H if the extension
1s produced by Algorithm 4.3 under the direction of sequence (zy, ..., Tn,,

..y Tny4s) described in ({.48) above. Additionally, suppose a crisp hyper-
graph H = (X, E) satisfies, with respect to a nontrivial partition {Y;,Y2}
of X, either

Condition (i) k2 — 1 < 8°(H/Y:) (where k2 is determined above) or
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Condition (i) AP(HRY,) < 6°(H/Y,) and, in addition, H /Y; satisfies

Condition (iit) H/Y: is filled (see Definition 4.33).

Then, two conclusions follow:

Conclusion (i). Any k-coloring, K1, of H/Y; that is extended to a full k-
coloring of H through the application of Algorithm 4.3 directed by sequence
(Z1, ---» Tnys ---» Tnpts), as described above in (4.48), is a strongly
conservative k-coloring of H with respect to Yz (see Definition 4.38). In
particular, if K, is a k-coloring of H/Y) which satisfies | K| > ko, where

ko =1+ V{8P(H/[X \ A]) | AC Y},
then no further colors are required to extend K, to a k-coloring of H if
the extension is produced by Algorithm 4.3 under the direction of sequence
(z1, -y Tngs ---» Tnts) described earlier in (4.48).

Conclusion (i1). The linear ordering, My(z), of X given by the ordered
sum

Mu(X) =Lg(Ya) + TGy, (V) = {21, .-, TngsTngit, ---,Tn}
is a conservative linear ordering of X (see Definition 4.37).

Proof. The proof consists in examining the production of a k coloring of
H by use of Algorithm 4.3 via the linear ordering My (X). We first divide
My (X) into an ordered sum of subsequences each of which, in turn, will
be analyzed from the standpoint of determining an upper bound of how
many new colors may possibly be required to color the subsequence.
Recall that My (X) is the ordered sum
Mu(X) =LE(¥2) + LYy, (Ya),
where, respectively, according to Definitions 4.36 and 4.39,

LY (Y2) = QF(Y2) + RG(Y2) (4.49)

anfi_, with the understanding that Y; represents V(H/Y;),

Ly, (Y1) =85, M\ %) + QF y, (1) + RY, y, (1)
Therefore, My (X) can be expressed as the ordered sum:

My (X) = Q4(Y2) +RE(Y2) +85 v, M1\ V1) +QF v, (F1) + Ry, (1)

For thg remainder of this proof we assume that neither Rf, (Ya), nor ¥4,
nor (Y1\Y3), nor Rg na (Y1) is empty. Of course it then follows that neither
Q%(Yz) nor Qf{ v (Y1) is empty.

Recall from Algorithm 4.3 that Mg (X) directs rule M so that the ver-
tices of X are colored sequentially in the order which is opposite (or reverse
t0) the ordering My (X). Thus, for example, the last member in sequence
My (X) is the first vertex to be colored, the second to last member in
sequence Mpy(X) is the second vertex to be colored. This operation con-
tinues backwards, step by step, through the linear ordering My (X) until
the last vertex to be colored (by rule M) is the first member of sequence
My (X). Therefore My(X) will direct a coloring of X by first coloring
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Y; according to rule M as directed by the linear ordering TZ /Y, (Y1), of
Y:. More spec1ﬁca.lly, Y] is colored in three consecutive sta; ges first the
members of RH ne (Y1) are colored, next the members of Q7 ne (Y1) are

colored, and then the members of Y\ Y1 are colored with respect to the
arbitrarily selected ordering Sg e (Y1 \ Y1) to complete the coloring of ;.

The members of R‘Z n (Y1), where Y1 = V(H/Y1), satisfy the hypothesis
stated in step k(ii) of the algorithm which appears at the beginning of the
proof of Theorem 4.43 when the algorithm is applied to the hypergraph
H/Y,. Therefore, no edge of H is contained in the set of members of
R?, v, (Y1). This follows because no edge of H/Y; is contained in the set

of members of RZ na (Y1) and that every edge of H contained in Y; belongs
to H/Y; (see Definition 4.33). Hence, according to rule M in Algorithm
5.3, all members of R‘;, N (Y1) will be assigned the same color.

Recall that QZ e (Y1) is the non-residual portion of a Sy /v, -ordering

of the vertex set Y3 (= V(H/Y:)), which is an ordering as specified in
the proof of Theorem 4.43. Therefore, an upper estimate on the number
of different colors introduced into the sequential colonng of Q H/M (Yl) is

immediate from Theorem 4.43. For rule M directed by L H v (Y1) follows
precisely the same pattern of selecting colors as discussed in the proof of
Theorem 4.43. Hence, no more than

1+ V{6 ([H/Y1]/A) | A C Ya(= V(H/Y1))} = 1+ V{6°(H/A) | AC Y1}
colors are used to obtain a k-coloring of H/Y; by application of rule M (in
Algorithm 4.3) according to the linear ordering, f, /Y (Y1), of Y3.

We next, observe that no edge of H/Y; contains members of Y; \ Yl(—
Y1\ V(H/Y1)). Therefore, no edge of H that contains members of Y; \ Y; is
contained in Y;. Thus rule M as directed by Mg (X) will color all members
of \Y1 with colors that have been used to color Y;. Hence, in Algorithm
4.3, rule M directed by My (X) will color Y; with no more than

k1 =1+ V{6°(H/A)| AC Y;} (4.50)

colors.

(Before we begin to color Y2, we note that with the coloring of ¥; a
k-coloring of H/Y; has been completed. Thus every edge in H not yet
completely colored must have members belonging to Y>.)

To complete the k-coloring of H through the use of Algorithm 4.3 di-
rected by My (X) it remains to color Y5 by rule M directed by sequence
L%(Yg). Recall from (4.49) that the members of Y; are divided into two
ordered subsets. The first subset of Y5 to be colored is the set of members
belonging to R% (Y2). Then the task of coloring H is completed by coloring

the members of Qg()’z)
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The members of R‘,’,(Yz) form the remainder of Y, determined by the
(3 -ordering, L?_,(Yg), of Y2. Thus the members of R%(Yz) satisfy the
hypothesis stated in step k(ii) of the algorithm appearing in Definition
4.36. Consequently no edge of H containing members of R?{(}/z) can be

contained in Yy U {Zk,+1, ..., &n,}, Where it is understood that
Q% (¥2) = {z1, ..., zk,} (4.51)
and
R2(Y2) = {Thpt1s -+ Tnp}- (4.52)

Thus, every edge of H not belonging to H/Y; must contain members of
Q%(Yg). Hence Algorithm 4.3 directed by My (X) will introduce no new
colors in coloring the members of R% (Y2). Therefore, no more than «;
(see (4.50) above) colors are used to color Y3 U {Zk,+1, ..., Tn,} though
the utilization of Algorithm 4.3 directed by My (X). Finally, the members
of Q'f, (Y2) are ready to be colored.

Now Q‘;, (Y2) = {z1, ..., Zk, } given in (4.51) is the non residual portion
of a By-ordering of Y, developed according to the algorithm stated in
Definition 4.36. Therefore, since x; satisfies the property specified in step
1, the By-degree of z, satisfies

(1) = Md} () | z € Y2} = 6°(HEY;). (4.53)

For1 < k < ko with A = X\{z1, ..., Zk—1} and By = Yo\{z1, ..., Tk-1},
the By, 4, -degree of zj satisfies,

) a, (@x) = Ady 4, (2) | T € Be N V(H/AR)}.

by step k(¢). We now show that

@4, (Tk) < Ry — 1 (see (4.55) below). (4.54)

Let Dy = By \ V(H/AL). Since By, C Ay, it follows that Dy C Ag. Thus,
Dy C Ax \ V(H/Ax)-Hence, according to Definition 4.33,
H/Ax = H/[Ax \ D] = H/ Ay,
where Ay = A \ Di = X \ [{z1, ..., Zk—1} U Dg]. In addition, Y3 \
[{zla, .o.y Tk—1} U Di] = B N'V(H/A). Hence it follows that
i a, (@) = /\{dg/Ak (z) | z € BN V(H/AL)}
= Mdu/(x\l{z1, . ze_yue)) () | T € Yo\ [{z1, ..., Zx_1}UDL]}
=6°(H/(X\[{z1, ..., Tk-1}UD:)) Y2\ [{z1, ..., Tk_1}UDK])
< V{6P(H/[X \ A|MY2\ A) | A C Ya}.
This gives the desired result.
By (4.53) and (4.54) and the requirements stipulated in rule M of Algo-
rithm 4.3, it follows that when rule M is directed by Q%(}’g) the essential
B-degree argument used to prove the upper estimate in Theorem 4.43 can
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be reapplied here in this given situation. Hence at most &2 colors are
required to color {z, ..., Tk, }, where &2 satisfies

ko =1+ V{6°(H/[X \ A|MY2\ A) | A C Yo}. (4.55)

With the completion of the above analysis it is clear that Algorithm 4.3
directed by My (X) produces a k-coloring of H that uses at most

K1V Ro (4.56)

colors where x; and & are defined, respectively, in (4.50) and (4.55)
Furthermore, it has been established that if K; is a k-coloring of H/Y)
then at most
0V (ke — |K1l)
new colors are required to extend K; to a k-coloring of H produced by
Algorithm 4.3 under the direction of ordered sum
L% (Y2) + S(YA \ V(H/1)) = {Z1, ..., Tnys .-+, Tngts}-

Note that the above equation also appears in the statement of Lemma
4.46. In other words, it has been established, in view of Definition 4.38, that
Algorithm 4.3 directed by this ordered sum in the above equation produces
a weakly conservative k-coloring extension of X; to H with respect to Yz
for any k-coloring, K, of H/Y;. We now see that My (X) satisfies both
properties (i) and (ii) as stated in Lemma 4.46.

To complete the proof of Lemma 4.46 it is necessary to establish the
following claim:

If the partition {Y;,Y2} of X satisfies either
(i) k2 — 1 < 6°(H/Y1), where &2 is as defined in (4.55)
or
(ii) A°(HWY;) < 6°(H/Y1)
and
(i) H/Y; is filled (see Definition 4.33) then &2 = k2, where

ko =1+ V{6°(H/[X \ 4]) | AC Ya}. (4.57)

The proof of the claim is as follows: Since H/Y; is filled, V(H/Y;) =Y.
Thus for any subset A of Y, such that |[A| < |Y2|, X \ A is partitioned by
a pair of non-empty sets {Y> \ A, V(H/Y1)}. Therefore,

& (H/ [X5\ A))

= /\{dHé[X\A](a:) |z e X\ A}

=A [{dg/[x\,q](x) |zeYa\ A}U {dH/[X\A](x) |z € V(H/Yl)}]

2 A {df 0 a(2) | 2 € Y2\ A} U{dy v, (2) |2 € VH/Y)Y
(since d7; .y, (¥) < dfy ix\ 4(%) for all = € V(H/Y1)})
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=N {d}a{/(x\A](x) |z€Ya\ A}

since, due to either (i) or (ii),

MdZ (@) |z € Y2\ A}
= 6°(H/[X \ A|WY; \ A)
< 8°(H/Y1) = A {dY)y, () | z € V(H/Y1)}.

Hence for every A C Y5
8 (H/IX \ A]) 2 6°(H/[X \ A|m[Y, \ A).
Now, for every A C Y3,
§P(H/(X \ A]) < & (H/[X \ AR[Y, \ A)).

Therefore &2 = k2.

From this claim, we can show that the following assertion holds. Now
that our claim is established, the following assertion holds. If H/Y is filled
and either condition (i) or (ii) in the above claim is satisfied, then Mg (X)
is a conservative ordering of X (see Definition 4.37). This follows since we
have already shown that if Algorithm 4.3 is directed by My(X) to obtain
a k-coloring of H, then no more than k; V &, colors are used (see(4.56)).
With &2 = kg it follows that at most k; V k2 colors are needed to color
X. However, as seen from (4.50) and (4.57),

V{k1, K2} < 14+ V{6P(H/A) | AC X}.

Therefore, Mg (X) is a conservative ordering of X and the proof of con-
clusion (ii) is completed.

Finally conclusion (i) follows by the earlier establishment of properties
(i) and (ii) together with the proof of the above claim. W

We now examine the problem of extending partial £-colorings to full £-
colorings for a certain fuzzy hypergraphs including the p-tempered fuzzy
hypergraphs, u & H. of a crisp hypergraph H.

Lemma 4.47 Let H = (X,€) be a sequentially simple fuzzy hypergraph
with core set C(H) = {H™ = (X;,E;) |1 =1, ..., n}, and the members of
F(H) ordered r, < --- < 1. Suppose E € Ej i \ E; for some j < n and
ke{1, ... <n—j}. Then E ¢ X;.

We only sketch how a proof of Lemma 4.47 would go. Suppose E €
E;13\ E;. Then either E € Ej;2 or E ¢ E;y2. In the latter case,
E € Ej;3 \ Ej;2, which implies that E ¢ X, and thus, E C X since
X; € Xj42. Hence assume E € Ej;o. Then either E € Ej4 or E ¢
E;11. In the latter case, E € Ej42 \ Ej1, which implies that E € X4,
and therefore, E ¢ X;. Thus assume E € E;;,. Then, since E ¢ E;,
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it follows that E € E;j4; \ E;. Hence E € X;. Therefore, we see that
E ¢ X;.

Definition 4.40 Let H = (X, &) be a fuzzy hypergraph on X with core set
C(H)={H™ = (X;,E;) |i=1, ..., n}, where, E(H™) = E; is the crisp
edge set of the core hypergraph H™. Let E(H) denote the crisp edge set of
H defined by E(H) = U{E; | E; = E(H™), H™ € C(H)}. E(H) is a crisp
hypergraph on X or, more precisely, the edge set of the crisp hypergraph,
H(H) = (X,E(H)), on X called the core’s (crisp) aggregate hypergraph of
‘H or, alternatively called the (crisp) aggregate hypergraph of H.

Lemma 4.48 For every fuzzy hypergraph H, a k-coloring of H(H) is a
L-coloring of H and conversely. B

Definition 4.41 If H is a fuzzy hypergraph, then every L-coloring of H
which is a conservative k-coloring of H(H), is said to be a conservative
L-coloring of H.

Definition 4.42 Let H> = (X;,E;) be a (crisp) core hypergraph of a
fuzzy hypergraph H = (X,£) where X§ = X \ X; # (0. Furthermore,
suppose K is an L-coloring of the upper truncated fuzzy hypergraph H("3)
which is obtained by extending a k-coloring, K;, of H™. If K is a weakly
(or strongly) conservative k-coloring extension of K; to the (crisp) core
aggregate hypergraph H(H(™)) of H("3) with respect to X5 (see Definition
4.38), then K is called a weakly (or strongly) conservative L-coloring ex-
tension of K to M) with respect to X5.

In the above situation, we also say: “K is extended weakly (or, strongly)
conservative with respect to X5, to a L-coloring K of H (),

Theorem 4.49 Let H = (X, £) be a sequentially simple fuzzy hypergraph
on X with core set C(H) = {H™ = (X;,E;) | 7 =1, ..., n}. Let
H™ = (X;,E;) be a core hypergraph of H for which the complement X§ =
X\ V(H") # 0. Then any k-coloring K; of H™> can be extended, weakly
conservative with respect to X5, to an L- colomng K of H(™3), which is called
the upper 7;-level truncation of H (see Definition {.16). The extension K
can be produced by allowing K to be ertended, weakly conservative with re-
spect to X, to a k-coloring of the core aggregate hypergraph H(H(™)) by a
procedure descnbed in Lemma 4.46. Therefore, whenever |K,| equals or ez-
ceeds RS, where &Y = 14+ V{EP(H(H))/[X \ A|MXS\ A) | A C X5} the
k-coloring, Ky, of H™ can be extended to an L-coloring of H(™) without
introducing any new colors by a procedure set forth in Lemma 4.46. If, in
addition, complement X§ = X \ V(H") satisfies
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Condition j: AP(H(H™))BX \ V(H"™)) < 8% (H™)

then any k-coloring, K, of H™> can be extended, strongly conservative with
respect to X3, to an L-coloring of H(3) where no new colors are introduced
if |K1| > &5, where k9 = 1+ V{6P(H(HU))/[X \ A]) | A C X5}. (This
can be accomplished by extending K, to a k-coloring of the core aggregate
hypergraph H(H(™)) by a procedure described in Lemma 4.46.) In particu-
lar, if K1 is a conservative k-coloring of H™, where X§ = X \ V(H"7) is
non empty and satisfies condition j, then K, can be extended to a conser-
vative L-coloring of H™) by a procedure described in Lemma 4.46.

Proof. Theorem 4.49 is a direct result of Lemma 4.46 through an in-
terpretation provided by Lemma 4.48. More specifically, the (crisp) core
aggregate hypergraph H(H(™)) is identified with H appearing in Lemma
4.46. The partition {Y;,Y>}, stated in Lemma 4.46, is understood here to
satisfy Y1 = Xj, Y2 = X§. Since H is sequentially simple, Y = V(H").
Thus H™> = H(H(#))/Y; by Lemma 4.47, and H" is filled.

With the above associations and observations the results of Theorem
4.49 follow readily from the statement of Lemma 4.46.

Corollary 4.50 Suppose H = (X, &) is a simply ordered fuzzy hypergraph
and suppose H'53 € C(H). Assume X5 =X\ V(H™) # 0 and
Condition j: AP(H(H(™))BX$) < 6°(H™),

is satisfied. Then any k-coloring of H™i with at least k3 ) colors, where

(’) is defined in Theorem 4.49, can be extended to an L-coloring of H
un'thout the addition of any new colors by a procedure described in Lemma
4.46. Moreover, any conservative k-coloring of H™ can be extended to a
conservative L-coloring of H by a procedure described in Lemma 4.46.

(7

Proof. Since H is ordered, the lower truncation, H(rsyo of H at level r; is
ordered (see Definition 4.16). Thus, any k-coloring of H™ is an L-coloring
of H(,,) (see Theorem 4.37).

Hence, since

C(H,;)) UC(H)) = C(H),
the desired results follow from Theorem 4.49, which is applicable here since
condition j is assumed and H is sequentially simple. ll

Since H = p® H is simply ordered, Corollary 4.50 is applicable, provided
condition j is valid for some core hypergraph H™;. Moreover, since H is
sequentially simple, the edge set of star H(H)(X5), in the core aggregate
hypergraph H(H) of H, is precisely the full set of “new” edges that be-
long to those H"i+*’s that “lie below” H7s; that is the edge set of star,
H(H)(X$), of X{ in H(H) satisfies

E(HH)(X)) ={E| E€Ejxx \Ej, k=1, ..., n—j},
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where E; is the edge set of H™ € C(H). Thus, all new edges introduced
“pelow” H™ and only those edges are involved in the determination of
AP(H(H)(X)MXE) = AP(H(H)BXG).

Theorem 4.51 If H is a sequentially simple fuzzy hypergraph, then H~,
H® and H® are sequentially simple fuzzy hypergraphs as well.

Proof. Clearly H™ is sequentially simple and, by Lemma 4.33, the skeleton
of H, H?, is sequentially simple as well. Therefore H2 = (H~)* must be
sequentially simple provided H~ exists. l

Since H? is sequentially simple whenever H is sequentially simple (pro-
vided H~ exists), the results of Theorem 4.49 apply to H2 whenever H
is sequentially simple. In some cases, moreover, H2 is considerably less
complicated than H. If this situation is true and H is sequentially simple,
it may be advantageous to work with %, rather than with H, to compute
L-coloring extensions of given k-colorings of specific core hypergraphs.

Chromatic Values of Fuzzy Colorings

We now respond to question (iv) in Example 4.14. We do this by intro-
ducing a chromatic value to each fuzzy coloring of H. We also present
an equivalent definition of an L-coloring, which takes the form of a fuzzy
hypergraph. Finally, we end the section with a discussion, through an
example, on how chromatic values provide fuzzy information.

Definition 4.43 Let H = (X,€) be a fuzzy hypergraph on X and suppose
I'={y; €Fp(X)|i=1, ..., m} is a finite subset of Fp(X). ThenT is
called a fuzzy coloring of H if the following properties are satisfied.

(1) Vz € X, V{v;(z) |i=1, ..., m} = V{u(z) | n € &},
(2) v:Nv; = xp fi # 7,
(8) T¢ is a coloring of H® for 0 < ¢ < h(H).

We note that I' is sequentially elementary with respect to F(H).

There is a one-to-one correspondence between the £-colorings of H and
the fuzzy colorings of H, under the condition that all members (color sets)
of a coloring are non-empty. For suppose I is a fuzzy coloring of H =
(X,€). Then property (3) in Definition 4.43 implies the r,-cut, I, of T,
where 7, is the smallest value in the fundamental sequence, F(H), of H, is
a k-coloring of the core aggregate hypergraph, H(H), of H which in turn
implies I'"™* is an £L-coloring of H (see Lemma 4.48).

Conversely, suppose C = {51, ..., Sk} is an L-coloring of H. Then C is
a crisp coloring of the core aggregate hypergraph, H(H), of H, U5, S, = X
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and S;NS; = 0 if ¢ # j. Now with each S; associate a fuzzy subset
v; € Fp(X), with support S;, defined by
Vux) peé} ifzes;,

vi(z) = W= } otherwise.

It is easily shown that I' = {v,, ..., 7.} is a fuzzy coloring of H.

Clearly each of the above associations is a one-to-one mapping and each
is the inverse of the other. Thus each association yields a one-to-one corre-
spondence between the set of fuzzy colorings of H and the set of £-colorings
of H.

Among several chromatic values that can be assigned to I', two primary
examples are given. The first example assigns a chromatic value to T,
designated Af(T"), which averages the chromatic cardinalities |['°| through
an apportionment dependent upon those fuzzy levels, ¢, where new color
increments first appear (as one descends the scale of fuzziness). The second
example assigns a chromatic value to I, denoted Af(I"), which is a weighted
average that is dependent upon the “fuzzy duration” between successive
new color increments in I'.

Before we introduce the definition of Af(I") below in Definition 4.46, we
first introduce the following two definitions:

Definition 4.44 Let v € Fp(X). Define the fuzzy subset Y(o) of X by
Vr € X,
h if v(z) = h(v),
'Y(a)(l') — { () if y(x) ()

0 otherwise.

V(o) 1s called the elementary center

Definition 4.45 LetT' = {y, € §p(X) |i=1, ..., k}. ThenI(s), called
the elementary center of I, is defined by

P(d) = {Vl(a)a LR 7k(a)}?
where Yi(e) S the elementary center of ;.

Definition 4.46 Let [(s) be the elementary center of a fuzzy coloring I" of

H with fundamental sequence F(T)) ={t, t5, ..., tL}, wheret] > L >
- > tL and let f be a monotonic increasing function on the interval [0,1]

such that f(0) =0 and f(1) = 1. Such an f is called a scaling function.

We assign a chromatic value A¢(T') to ', called the As-chromatic valua-
tion of T (or, alternatively, the f-chromatic value of T') as follows:

q
(E:ﬂﬁnnﬁw)
r

j=1

(iﬂ@) |

=1

Ap(T) =
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where IF(,),,;-l is cardinality of the t}-cut of ['g) (ie., |F(,)'t1r| represents
the number of edges in I"(a)',;-).

We also assign another chromatic value A f([) to T, called the
A s-chromatic valuation of T' (or, alternatively, the f-chromatic value of
[ ) as follows:

q

A(D) =3 (FGE) = F(EE4)) Loy s,

j=1
where T, is understood to be zero.

If r and s € [0,1] and f is a scaling function, then |f(s) — f(r)| will be
called an “f-fuzzy duration.” This simple tool can be useful in situations
where a given property is invariant over all fuzzy degrees of membership
between 7 and s. We also use the convention: If f is the identity map, then
A(T) = Ag(T) and A(T) = Ag(T).

It is of interest to consider when values of f are referenced against some
fixed non-zero value of f. A typical point of reference for a scaling function
f relative to a given fuzzy hypergraph H would be f(r,), where r, is the
smallest value of F(H). For a coloring I, a reasonable reference point might
be f(t7), which appears in the formulation of As(T'). Such scalings, when
carefully adjusted to particular circumstances, can enhance the usefulness
of chromatic valuations of fuzzy colorings; for example in the determination
of relative costs attached to competing long range proposals (i.e., fuzzy
colorings, I'), which may arise in situations typified by Example 4.14.

Indeed, since scaling functions like f;(z) = 23 de-emphasize lower fuzzy
degrees while scaling functions like fo(z) = z!/3 emphasize lower fuzzy
degrees, it would be reasonable to assume, in situations like prototype Ex-
ample 3.1, that managements which stress short term goals would probably
select f; over f;, while managements that stress long term goals would be
more inclined to favor f, over f;. In this way, chromatic valuations can be
customized to fit stated requirements. R N

Consider the situation where the fuzzy hypergraphs H = (X,£) and
H(X, £) satisfy the property that there exists a satisfying 0 < a < 1 such
that

E={v=ap|neét},

where v = ap means: v(z) = ap(z), for all z € X. In this case we write

aH for H. With F(H) = {ry, .... ra} it follows that the fundamental
sequence F(H) = {7, ..., 7o} of H satisfies
7"3=a‘r,-, i=1,...,n,

C(H)={H"|i=1, ..., n}
={H"|i=1,..., n} = C(H).

Clearly, the set of fuzzy colorings I" on H correspond uniquely with the
fuzzy colorings I' of H under the correspondence I' = aI'. Hence if the
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initial factor f(t!) were eliminated from the formulation of A¢(T), then, in
the special case where f is the identity map on [0, 1],

A(T) would equal A(al’) = A(T).

In fact

A(al) = aA(T).

and A(al') = aA(D).

For any fuzzy coloring I' of H, the f-factor f(t]) in Af(T) scales the
valuation Af(T') according to the maximum degree of fuzziness in H as
interpreted by the scaling function f. This sensitizes the valuation of Af(I")
to the range of fuzziness in H.

The concept of f-chromatic values of I" leads naturally to the following
definitions.

Definition 4.47 Let H be a fuzzy hypergraph and let f denote a scaling
function. Then

xs(H) = MAs(T) | T is a fuzzy coloring of H}

and

Xs(H) = MAs(T) | T 4s a fuzzy coloring of H}
are called, respectively, the Aj-chromatic number and the As-chromatic
number of H. In the special case where f is the identity map on [0,1],
xs(H), or x;(H) will sometimes be called linear chromatic numbers of H.

Theorem 4.52 For every fuzzy hypergraph H and every scaling function
f:[0,1] — [0, 1],

xy(H) < x(H), xs(H) < x(H) and

x(H) = A{|T| T is a fuzzy coloring of H} = A{|K|| K is an L-coloring
of H},
where, |[| is the number of edges in I’ and |K| is the number of colors in
K.n

The following example illustrates how the linear chromatic value A(T")
depends upon the fundamental sequence F(I'(,)) of ['(s). In particular for
f the identity map on [0,1] we contrast the fuzzy attributes of A(I) and
Xf(H), with its dependency upon F(I'(,)), against the nonfuzzy attributes
of x(H).

Example 4.17 Consider the elementary fuzzy hypergraph H = (X, &),
where F(H) = {r1,r2}, with r1 > 2, and an edge set £ = {o(E;,m1) | i =
, 6}U{o(E;,r2) |1 =17, ..., 15}, where each support E;,i =1, ...,
15 has cardinality two. Recall that o(E,r) is the elementary fuzzy subset
on X defined by
T ifx € E,

o(E,r)(z) = { 0  otherwise.
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FIGURE 4.2 Vertex and edge sets of H.
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Figure 4.2 illustrates the verter and edge set of H. FEdges of height ry are
indicated by solid-lined arcs; edges of height ro are indicated by dash-lined
arcs.

Clearly, X =V(H)={a, b, ..., i} and C(H) = (H™, H"), where

H" =({a, ..., f}, {E1, --., Eg})

and

H™ = (X, {El, RN E15}).

Since H is elementary, it is ordered; Thus by Theorem 4.87, every prim-
itive coloring of H is an L-coloring of H. Therefore, x(H) = 3 since H™
has the following primitive coloring: Cy = {B,G,W}, where B = {a,d, i},
G =1{b,f.h} and W = {c,e,g}. Notice, however, when C; is restricted to
H™ | it remains a 3-color set, C, = {B',C',W’}, where B’ = {a,d}, G' =
{b, f} and W’ = {c,e}.

If this problem were the representation of a waste management problem,
the fact that C| is not a minimal coloring of H™ might suggest that al-
ternative solutions (other than C;) might be more efficient from certain
specific viewpoints, such as cost analysis. Indeed, it is reasonable to ask
whether or not some minimal coloring, Cj of H™, which is ezpandable to
an L-coloring Cy of H is more (cost effective than solution Cy (even though
Cy is not a minimal L-coloring of H)).

Suppose f is the identity map. Under the assumption that an optimal cost
effective solution, T, satisfies Af(I') = x;(H), it is interesting to compare
Af(T) with Ap(T'2), where I'y and 'y are the fuzzy colorings of H, where
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C, is given below. This is what we intend to do. Let Cy be the following
primitive coloring of H™: Co = {B,G,R,W,Y}, where B = {a,c,e}, G =
{9}, R={h}, W = {b,d,f} and Y = {i}. The restriction, C3, of Cz to
H™ is a 2-color set, Cy = {B,W}.

For i = 1,2, we have Ag(T;) = r1(ki)/(r1 + 72),where k; = 3ry + 3rg
and ko = 2ry + 5r2.To compare A¢(I';), i = 1,2, it suffices to compare
k;, i = 1,2. By changing scales so thatro — 1 andr; «— 1+¢, € >0 (i.e,
r1/72 = 1+€), it suffices to compare ky = 3+3(1+¢) and ky = 5+2(1+¢).

It may be noted that as ro — 0, € could approach oo if the relative sizes
of 1 and T3 are altered sufficiently.

Clearly, ko < ky &1 <e. Thus Af(T2) < Af(T1) © 71 > 212 and equal-
ity holds < 1 = 2rp. In particular, if 11 = 1, then Ap(I'2) < Af(T'y) &
To < %

In fact if 11 =1, then

— Af(r1)=3 2fT2> s

Xf(H) - Af(rz) ifro <3 ?

Moreover, as g — 0, x(H) = Ag(T')) ﬂemains 3 while Ag(T2) — 2.

To clarify the above evaluation of the linear chromatic number x;(H), it
suffices to see that if H™ is minimally colored with 2 colors then there is
really only one L-coloring extension to H which is given by Cj.

From this example, it is clear that the coloring problem associated with
Xs(H) is a non-traditional coloring problem. Moreover, it is an example of
a fuzzy coloring problem with applications.

Suppose that we restrict the scaling functions to a 1-parameter family
such as S = {fp(z) = z? | p > 0}. Then consider the question: How
sensitive is the value of x;(H) or As(T') to perturbations in S about a
specific member f,, of S? For example, given € > 0, what is the maximum
6 > 0 for which Ay, (I') is 2 member of the e-neighborhood, N¢(Ay, (T)), of
Ay, (T') provided p is a member of the §-neighborhood, Ns(po). of po? It
would be helpful to evaluate the first derivative of Ay, (') with respect to
p and develop sensitivity analysis from this information.

4.4 Intersecting Fuzzy Hypergraphs

Let H be a crisp hypergraph. H is said to be intersecting if the edges
of H are pairwise non-disjoint. Every vertex = of H has a star, H(z),
which is the set of edges in H containing . The edges in H(z) are, of
course, pairwise joined. This is the property that distinguishes intersecting
families of edges (which may be full or partial hypergraphs as the situation
warrants). For multigraphs (hypergraphs, with repeated edges, where all
edges have cardinality equal or less than two), the only intersecting families
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of edges are stars and triangles (perhaps with multiple edges). However, the
following example shows that the general case is more extensive.

Example 4.18 Let H be represented by the following incidence matriz.

My H2 M3 Hq
a 1010
b 1100
c 0110
d 1 001
e 0101
f 0 011

Clearly, H is an intersecting hypergraph which is neither a star nor triangle.

There are several ways to define intersecting fuzzy hypergraphs.

Definition 4.48 A fuzzy hypergraph H = (X, £) is said to be intersecting
if, for each pair of fuzzy edges {py, 10} C &, puy Npy # Xo, where xq is the
fuzzy subset which is tdentically equal to zero on X.

Definition 4.49 Let H = (X, ) be a fuzzy hypergraph and suppose C(H)
={H™ ,H™,...,H™}. If H™ is an intersecting hypergraph for each i =
1, 2,..., n, then H is L-intersecting.

Theorem 4.53 H = (X,£) be a fuzzy hypergraph and suppose C(H) =
{H™, H™,..., H™}. Then H is intersecting if and only if H™» = (X, E™)

s ntersecting.

Proof. H is intersecting < supp(H) = {supp(y) | ¢ € £} is intersecting.
The desired result follows since E™ = supp(H) for every fuzzy hypergraph
H.0

Theorem 4.54 Let H = (X.£) be an ordered fuzzy hypergraph and let
C(H) ={H™,H™,...,H™}. Then H is intersecting if and only if H is
L-intersecting.

Proof. If H is L-intersecting, then H is intersecting. This follows easily
from Definition 4.49 and Theorem 4.53. In fact, H is L-intersecting =
H™ is intersecting < H is intersecting. Conversely, suppose that H is
intersecting. It follows that H™ is also intersecting. If E and F are edges
in H™, then since H™ C H™, E and F are also edges of the intersecting
hypergraph H"™", and hence intersect. ll

Example 4.19 Consider the fuzzy hypergraph H = (X, ) which has the
following incidence matriz:
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M1 K2
a 0.7 09
b 0.5 0.3

Then E*3 = {{a,b}}, E®® = {{a,b},{a}},E®" = {{a}},E*® = {{a}}.
Thus E?® = E%7 C E05 C E%3. Note also E®3 C E®5. We have r; = 0.9,

9 =0.5, andr3 =03 and H™ = ({a}’ {{a}})’ H™ = ({arb}7 {{a': b}) {a}})7

H™ = ({a,b},{{a,b}}). Now E" = {{a}} C E” = {{a;b},{a}} &
E™ = {{a,b}}. Thus H is not ordered. H is however L-intersecting. (H™

and H™ are vacuously intersecting hypergraphs.)

Example 4.20 Consider the fuzzy hypergraph H = (X,E) which has the
following incidence matriz:

B K2
a 09 O
b 04 04
c 0 09

Then E®4 = {{a, b}, {b, c}}, E®® = {{a}, {c}}. Thus E®°® C E*4. We have
11 =09, 72 =04 and H" = ({a,c}, {{a},{c}}),H™? = ({a,b,c},{{a, b},
{b,c}}). Now py N py # O and so H is intersecting. However H is not L-
intersecting since H™ is not intersecting. Note that H is not ordered since
E" Z E™

Theorem 4.55 Suppose H = (X,£) is an ordered, intersecting fuzzy hy-
pergraph. Then each fuzzy edge v of H contains a member of Tr*(HAM)),
where Hh(®)) is the upper truncation of H at level h(v). In particular, v
is a fuzzy transversal of HR),

Proof. Let C(H) = {H™,H",...,H™}, where 0 < r, < --- < 7}, and
suppose v € £. We assume without loss of generality that r; = h(v). Since
H is ordered and v™ # 0, it follows that v™ € H™. Since H is intersecting,
H™ is intersecting. Therefore, v™ is a transversal of H™. Let T, be a
minimal transversal of H™ contained in v™'. Since H is ordered, it follows
from Lemma 4.7 that there is a nested sequence of sets T, D --- D T; D
--- 2 Ty, such that T; is a minimal transversal of H™ for every r; € F(H).
Let 0; be the elementary fuzzy subset with support T; and height r;, for

i = 1,...,n. Then clearly, ‘ng gi€Tr*(H)and 7Cv. R

Example 4.21 LetH = (X, &) be the fuzzy hypergraph, where X = {a,b,c}
and € = {p,, iy, p3} which is represented by the following incidence matriz.

H1 Ho W3

a 09 0.7 04
b 0 0.7 04
c 0 0 04
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Then ry = 0.9,r2 = 0.7,73 = 0.4 is the fundamental sequence of H and
E, = {{a}},E2 = {{a},{a,b}},E3 = {{a},{a,b},{a,b,c}}. Hence H is

an ordered, intersecting fuzzy hypergraph. Now h(u,) = 0.7, u(10'7) (a) =

0.7, u§0.7)(b) — ﬂ‘(lo.—{)(c) =0, #g0.7) — ”2’#§0.7) = ps. Clearly, ugﬂ.?) is a
minimal transversal of H®™, py D #50’7) and py is a fuzzy transversal of

H(0.7) .

Several results in crisp hypergraph theory involve interaction between
intersecting hypergraphs H, minimal transversal sets Tr(H) and chromatic
numbers x(H). They invariably center on the simple fact that x(H) =
2 & there is a transversal of H which covers only the singleton edges of
H. Many of these results have fuzzy counterparts (see [2, pp. 46-48] for
example). We present such a result below. It depends upon the following
crisp result found in (2, p. 46).

Lemma 4.56 If H = (X,E) is a simple, intersecting (crisp) hypergraph
such that x(H) > 2, then E is equal to the set of all minimal transversals
of H.

Corollary 4.57 Suppose the conditions of Lemma /.56 hold with x(H) >
2. Then H has no loops. B

Theorem 4.58 Let H be an ordered, intersecting, fuzzy hypergraph with
C(H) = {H™,H™,...,H™}, where 0 < r,, < --- < 7. Suppose that
x(H™) > 2 and H™ is simple. Then for each r; € F(H),

Tr*(H")) = {o(E,;)|E € H™},
where o(E, 1;) is an elementary fuzzy subset with support E and height r;.

Proof. By hypothesis it follows that H™ is simple, intersecting and x(H™)
> 2 for each H™ € C(H). Thus, by Lemma 4.56, the edge set of H™ =
Tr(H™) for every r; € F(H). Hence the desired result follows. l

Definition 4.50 A fuzzy hypergraph is said to be strongly intersecting if
for any two edges p, and p,, both p, and p, contain a common spike of
height h = h(uq) A h(py).

Theorem 4.59 Let H be fuzzy hypergraph. Then H is strongly intersecting
if and only if H is L-intersecting.

Proof. Suppose that H is strongly intersecting. Let E and E’ be edges of
H"™ € C(H). Then there exist two edges p and p’ of H such that ™ = F
and (u')™ = E’. Since H is strongly intersecting, both p and y’ contain
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a common spike o, where k(o) > r;. Thus, supp(oz) = {z} C ENE".
Hence, H™/ is intersecting and H is L-intersecting.

Conversely, suppose that H is L-intersecting. Let v and v’ be edges of
H. Let ¢ = h(v) AR(¥') and let E = v¢, E' = (V)°. Then, both E and
E' belong to H¢ = H"7, where rj4; < ¢ < r;j, where we assume 741 = 0.
Since H™ is intersecting, there exists z € EN E’. Consequently, there is a
spike o with support {z} and height ¢ which is contained in both v and
. Hence, H is strongly intersecting. ll

Our next fuzzy result depends upon the following crisp result.

Theorem 4.60 (Berge [2]). If H is a crisp intersecting hypergraph, then
x(H) <3.

Proof. We may assume without loss of generality that n(H) > 2 (i.e.,
the number of vertices is > 2), and assume H has no repeated edges
(for if it does, delete the “extra” edges). If H has a loop, say {z}, then
H = H(z) is a star and consequently, x(H) = 2. Therefore, it suffices to
consider only hypergraphs without loops or repeated edges and with order
n(H) > 2. Assume H has these properties. Delete from H all edges which
properly contain another edge of H and call the resulting partial hyper-
graph H®. Clearly, x(H) = x(H?®). Moreover, H® is simple, intersecting
and without loops.

We now show that x(H?®) < 3. Assume,without loss of generality, that
H® has at least two edges. Pick an edge E € H® = (X% E?®). Clearly,
X8\ E # 0 since H® is simple (with no repeated edges) and |[E®| > 2. Let
y € E and note that E\ {y} # 0 since |E| > 2. (Recall that we deleted any
possible loop earlier.) Since all edges of H% other than E intersect both E
and X%\ E, it follows that {X% \ E, E\ {y}, {y}} is 2 coloring of H*. B

Certain “partial intersections” of H are useful. The following definitions
are especially important.

Definition 4.51 A fuzzy graph H is said to be essentially intersecting if
H~ is intersecting. H is said to be essentially strongly intersecting if H™
1s strongly intersecting.

The (-)° process, described in Construction 4.2, when applied to H™
provides a basic construction required in several investigations to follow.

Definition 4.52 Let HA = (H~)*. Then H is called A-intersecting if H®
is intersecting.
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For notational consistency, we shall always assume F('HA) ={t, ..., 1},
where t; = t§ > --- > t}, and assume F(H™) = {t1, ...,tn} with
tL > >tm.

Theorem 4.61 If H® is intersecting, then H is strongly intersecting.

Proof. Let C(H) = {H™ = (X;,E;) | i = 1, ..., n} be the set of core
hypergraphs of H and consider the core’s aggregate hypergraph H(H) =
(X,E(H)), where E(H) = U{E; |i =1, ..., n}. In addition, let (H*)™ =
(X3, E;,) represent the core hypergraph of H*® associated with the smallest
member 8, of F(H). From the construction of H*, it follows that every
edge belonging to E(H) contains an edge of E2,. Hence

H? is intersecting = H is strongly intersecting.

For, indeed, if H° is intersecting, then, according to Theorem 4.53, (H 3)"""
is intersecting, and therefore, the family of (crisp) edges E(H) is intersect-
ing as well. B

The converse of Theorem 4.61 is not true in general.

That H* need not be intersecting when H is strongly intersecting can be
seen from the following possibility: Let {v1,v2} be a pair of edges in H*.
Then there exists a corresponding pair of edges {x;, up} in H such that

(1) A(v1) = h(py) and ()"0 = ()",
(2) h(v2) = h(up) and ()" ¥2) = ()"

Under the assumption that h(v;) < h(v2) and the assumption that H is

strongly intersecting, it follows that

()"0 0 ()"0 £ 0.
However, it is possible that

('uz)h(#z) C (M)h(#u)
and, therefore, it is also possible that

()" 01 () *02) = .

In view of properties (1) and (2), if this latter possibility were to occur,
then v; N vy = 0 would be valid thereby demonstrating that H? is not an
intersecting fuzzy hypergraph. B

Corollary 4.62 If H is A-intersecting, then H is essentially strongly
intersecting. M

The converse of Corollary 4.62 is not true in general.

Theorem 4.63 If H is ordered and essentially intersecting, then x(H) <
3.

Proof. We may assume H ™ exists, for otherwise x(H) = 1. Let (H~)™ €
C(H~), where 7, is the smallest value of F(H~). Since H~ is inter-



4.4 Intersecting Fuzzy Hypergraphs 205

secting, it follows from Theorem 4.53 that (H~)"™ is a crisp intersecting
hypergraph. Therefore by Theorem 4.60, x((H~)™) < 3. Moreover, since
H is ordered, H ™ is ordered as well. Hence, since a coloring of (H _)r’" must
be a primitive coloring of H~ (see Definition 4.23), it follows from Theo-
rem 4.37 that a coloring of (H~)"™ is a £-coloring of H~. Therefore, since
x((H™)™) < 3, it follows from Definition 4.25 that x(H~) < 3. Finally,
since x(H) = x(H™), we have the desired result. B

Corollary 4.64 If H is elementary and essentially intersecting, then
x(H) <3.

Proof. Since H is ordered, the result follows from Theorem 4.63.

Corollary 4.65 If H is of the form p ® H and essentially intersecting,
then x(H) < 3.

Proof. The result follows from Corollary 4.64 since H is elementary (see
Theorem 4.2). B

Corollary 4.66 If H is a A-intersecting fuzzy hypergraph, then x(H) < 3.

Proof. Now H2 is intersecting. Since H is also elementary, it follows
from Corollary 4.64 that x(H*) < 3. Since x(H?) = x(H~) = x(H), the
result is established. ll

Unless H = H ™, some L-colorings of the skeleton, H*, of H may not be
extendible to £-colorings of H, or if extendible, then possibly not without
the use of new colors. Therefore, unless H = A~ it may happen that
x(H?) < x(H)-

Characterization of Strongly Intersecting Hypergraphs

Definition 4.53 Suppose H = {v; € Fp(X) | i =1, ..., m} is a finite
collection of fuzzy subsets of X and let ¢ € (0,1. Then H|. = {v €
Sp(X) | h(v) = ¢} denotes the set of edges in K of height c. In particular,
H| denotes the partial hypergraph of H = (X, £) with edge set £|., provided
e #0.

Definition 4.54 Let H; = (X;,£;), i = 1,2, be fuzzy hypergraphs. Then
Hy X My if every edge of Hy contains an edge of Ho. (If H,i=1,2, are
C?‘éSp hypergraphs, then H' < H? if every edge of H' contains an edge of
H?)

Lemma 4.67 (Beryge [1]). A crisp hypergraph H is intersecting if and only
if H X Tr(H).
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Proof. If H is intersecting, every edge is a transversal and must con-
tain a minimal transversal of H. Thus, H <X Tr(H). Conversely, since
every transversal of H intersects all edges of H, H <X Tr(H) implies H is
intersecting. ll

Theorem 4.68 H is strongly intersecting if and only of H™ <X Tr(H™)
for every H™ € C(H).

Proof. By Theorem 4.59, Definition 4.49, and Lemma 4.67, it follows that
H is strongly intersecting < H is L-intersecting < H™ is intersecting for
all H™ € C(H) & H™ <X Tr(H™) for all H™ € C(H). &

Theorem 4.69 H is a strongly intersecting fuzzy hypergraph if and only
if for every r; € F(H),(H"))|,, < Tr(Hr)).

Proof. Suppose for every r; € F(H), (H™)|,, < Tr(H). For each
H™ € C(H), the edge set E(H™) = {u™ | p € (H™)|,} 2 {" | T €
Tr(H™))} = Tr(E(H™)). Hence, H™ < Tr(H"), VH™ € C(H) and by
Theorem 4.68, H is strongly intersecting.

Conversely, suppose H is strongly intersecting. Let u € H|,,, where r;
is the largest member of F(H). Let H™ € C(H). We now show that u™
is a transversal of H"s. For suppose E € H"i. Then there is an edge v of
‘H such that ¥™ = E. Since H is strongly intersecting, there is a spike o
with height

h(az) = hlu) Ah(v) = h(v) = 15,
and support {z}, which is contained in both x and v. Hence, z € ENpu’™.
Thus 4 is a transversal of H and therefore contains a member of 7'r(H).
Therefore (H(™)) |,, < Tr(H™).

It follows from Theorem 4.59 that H is L-intersecting. Consequently, by
Theorem 4.59 again, it follows that every H(") must be strongly intersect-
ing. Hence

(H) |, < Tr(H)
for each r; e F(H). B

Corollary 4.70 Let H be a fuzzy hypergraph with C(H) = {H™ | r; €
F(H)}. Then H™ < Tr(H™), for every H™ € C(H) if and only if
(HT)Y |, < Tr(H")) for every r; € F(H).

Proof. The proof follows immediately from Theorems 4.68 and 4.69.

Theorem 4.71 H is strongly intersecting if and only if H,,) is intersect-
ing Vr; € F(H).
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Proof. By applying Theorem 4.53 to H(.,) and by Theorem 4.59, the
following chain of equivalencies hold: H;,,) is intersecting for every r; €
F(H) < E(H™) is intersecting for each H™ € C(H) < H is L-intersecting
& 'H is strongly intersecting. W

Simply Ordered Intersecting Hypergraphs

In Theorems 4.82 and 4.83, we obtain some fuzzy properties similar to the
crisp results in Theorem 4.72.

Theorem 4.72 (Berge [2]). Let H = (X, E) be a simple (crisp) hypergraph
of order > 2 (i.e., |X| > 2). Then, Tr(H) = H if and only of H is
intersecting and x(H) > 2.

Note that a simple intersecting hypergraph with a loop has order 1 (i.e.,
the vertex set is a singleton). Thus, the above theorem excludes hyper-
graphs with loops. Its proof follows since H is intersecting <> every edge
of H contains a minimal transversal (see Lemma 4.67) and since also if H
has at most one loop, then x(H) > 2 < every transversal contains at least
one edge which is not a loop.

Definition 4.55 A fuzzy hypergraph is said to be non-trivial if it has at
least one edge p such that |supp(p)| > 2.

Definition 4.56 A fuzzy hypergraph, H, is said to be sequentially simple
if C(H) = {H™ = (X" ,E™) | r; € F(H)} satisfies the property that if
E € E"*' \E™, then E ¢ X™, where r, < ... < r1. H is said to be
essentially sequentially simple of H™ is sequentially simple.

Note, if H is simply ordered, then H is sequentially simple. However the
converse is not true.

Theorem 4.73 Suppose H is a nontrivial essentially sequentially simple
fuzzy hypergraph which is A-intersecting. Then x((H =)"*) > 2 if and only
if Tr(H™) = HA|,, wheret, is the largest member of F(H™).

Proof. Suppose that x((H ‘)t‘) > 2. Since H is nontrivial, the order of
(H A)"" is greater than or equal to two; and, since H~ is sequentially sim-
ple, HA is locally simple (i.e., all members of C(H2) are simple crisp
hypergraphs.) Moreover, since H2 is intersecting and ordered, it fol-
lows from Theorem 4.54 that every member (H A)t;f € C(HA) is sim-
ple and intersecting. Since H is ordered, x((H™)") = x((HA)t‘). Since
also x((H™)") > 2, it follows that x((HA)t;) > 2 for all members of
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C(H?2). (Note, whenever H is ordered, then x(H™) < x(H™+'); this rela-
tionship, however, is not necessarily true if H is not ordered.) Therefore,
by Theorem 4.72,

(H4)S = Tr(H2)")
for all (H A) i e C(H2). Since H? is ordered, every edge of (H A)t' is
an edge of each core hypergraph of H® and so Tr(H?) = H%|;,. (Recall,
with respect to this last argument, that t,, the largest member of F(H™),
equals t5, the largest member of F(H?).) By Theorem 4.25 and Definition
4.52, Tr(’H ) = Tr(H3) and since x((H™)") > 2, Tr(H™) = H2|,,.

Suppose that Tr(H~) = H2|;, . Since Tr(H~) = Tr(H?) we now assume
Tr(H2) = H2|;,. Based upon this assumption, it follows that

(HA)h HAltl )tl — (TT('HA)t‘ — T’I’((HA)
where the last equality in the above chain is estabhshed in Proposition 4.11.
Moreover, since (H A)t' is simple and ‘H is nontrivial, the order of (H A)tl
is greater than or equal to two. Thus it follows from Theorem 4.72 that
x((H2)") > 2. Hence x((H")") > 2 since x((H")"") = x((H*)"). &

Corollary 4.74 Suppose H is a nontrivial fuzzy hypergraph of the form
p® H and is A-intersecting. Then x((H™)%) > 2 if and only if Tr(H™) =
HA|;, where ty is the largest member of F(H™).

Proof. By Theorem 4.2, p ® H is simply ordered and therefore essentially
sequentially simple. Thus the result follows at once from Theorem 4.73. Il

If H is a fuzzy hypergraph, we define the support of H, supp(H), to be
the set supp(H) = {supp(n) | n € £}.

Theorem 4.75 Suppose H is an ordered fuzzy hypergraph. Then the fol-
lowing assertions hold.

(1) H is intersecting if and only if H® is intersecting.
(2) H™ is intersecting if and only if H® is intersecting.

Proof. It suffices to prove part (1) since H4 = (H~)* and H™ is or-
dered whenever H is a nontrivial ordered fuzzy hypergraph. Now since
H is ordered, supp(H) = U{E(H™) | H™ € C(H)}. Thus, supp(H*®) C
supp(H). Furthermore, according to the construction of H®, every mem-
ber of the edge set E(H™) is either a member or contains a member of
supp(H?®). Therefore, for any two edges E, E’ C supp(H) there exist cor-
responding edges F, F’ C supp(H®) such that FC F and F/' C E'. Itis
now clear that supp(H?*) is intersecting <> supp(H) is intersecting. Hence,
in view of Theorem 4.53, part (1) is established. I
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Theorem 4.76 Let H be a fuzzy hypergraph. Then the following asser-
tions hold.

(1) If H? is intersecting, then H is strongly intersecting.

(2) If HA is intersecting, then H™ is strongly intersecting.

Proof. We have that every edge F in the core hypergraph H™ € C(H) con-
tains a member of supp(H?) by the construction process in producing H*®
and by the fact that H* is elementary. Hence, if supp(H?) is intersecting,
then every core hypergraph, H™ of H must be intersecting as well. Thus
H is L-intersecting and so by Theorem 4.59, H is strongly intersecting. W

In general, the converse of the implications in Theorem 4.76 do not hold.
The following example illustrates this.

Example 4.22 The incidence matriz for H is

H1 M2 U3
a 0.9 0 0
b 09 09 0
c 0 09 0

d 04 04 04
Clearly, H is strongly intersecting. However, the incidence matriz for H®
s
vy Vv V3

a 09 0 O
b 09 09 O
c 0 09 O

d 0 0 04
Clearly, H?® is not intersecting.

Theorem 4.77 Suppose H is stmply ordered and intersecting. Let 1 be
the largest member of F(H) and let the order of (H*)™ > 2. Then,

X(H™) > 2 Tr(H) = H°,,. (4.58)

Proof. We first show that if H is simply ordered and intersecting and the
number of vertices, n((H*)™), in the core hypergraph (H*)" € C(H?®)
equals or exceeds 2, then H does not possess a spike edge or an edge
with a terminal spike. To prove this assertion notice that whenever H
has either a spike edge or an edge with a terminal spike the process for
constructing H° produces a spike edge in the edge set, £(H®), of H*. In
addition, whenever H is simply ordered and intersecting H* is intersecting
by Theorem 4.75 and H* is locally simple, that is, every core hypergraph
in C(H?) is simple since H is sequentially simple. Consequently, every core
hypergraph in
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CH®)={H")" |5 <---<ri<---<r{=r1}
is simple and intersecting. Therefore, if H° contains a spike, some core
hypergraph, (H’)"; , contains a loop and it follows that n((H“’)";) =1
However this implies n((H°)™) = 1 which contradicts the hypothesis.
Thus by hypothesis
H=H" and H°=(H")*=HA
Therefore, the hypothesis of Theorem 4.77 satisfies the hypothesis of The-
orem 4.73, and so statement (4.58) follows from the conclusion of Theorem

4.73. B

Corollary 4.78 If H has the form p ® H and H is intersecting and has
no loops, then ({.58) in Theorem 4.77 holds.

Proof. We have that H is simply ordered and intersecting from Theorem
4.2 and from Definition 4.12. Thus H = H™, where r, is the smallest
member of F(H)). Also notice that n((H*)™) > 2. For according to the
method of constructing H?, core hypergraph (H*)™" of H® must contain
at least one member of H™' € C(H), where r; is the largest member of
F(H). However, as H has no loops, it follows from the structure of u®H, as
described in Definition 4.12, that every crisp edge in core hypergraph H™ of
C(H) must have cardinality equal or greater than 2. Thus n((H*)™) > 2.l

Theorem 4.79 Suppose H is a nontrivial fuzzy hypergraph. Let t, be the
largest member of F(H™) and

Tr(H™) = HA, (4.59)
Then H™ is strongly intersecting and x((H™)") > 2.

Proof. From Theorem 4.25 and Proposition 4.11,

(1) Tr(H®) = Tr(H), for every fuzzy hypergraph H, and

(2) the ri-cut of Tr(H) = Tr(H™), where 7, is the largest member of
F(H).
Hence it follows from statement (4.59) that

Tr((H2)") = (H2)" .

In addition, (H A)t1 is a (crisp) simple hypergraph of order > 2; this is
easily seen from the fact that H is nontrivial and the construction of HA
(in particular, see Definitions 4.26, 4.27, 4.52 and 4.55). Thus it follows
from Theorem 4.72 that (H A)tl is intersecting and x((H A)t’) > 2.

We claim that every core hypergraph (H~)" of C(H™) is a (crisp) in-
tersecting hypergraph.

To prove this claim, consider Definition 4.13. It indicates that each
member of the tj-cut of Tr(H ™) intersects every member of the edge set

E((H™)%). Also, since H2 is elementary, the t;-cut of H2|,, is (H M
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Thus by these two facts and condition (4.59), we have that every member
Te(H A)t' intersects each member of E((H~)"). Therefore, every edge
E € (H™)" intersects each edge of T € (H A)t1 . Hence, if two edges E,;
and E; of (H~)" did not intersect, then E; = E; N V((HA)“) (G =
1,2) would be non-intersecting transversals of (#2)"' . This would imply
X((HA)t') = 2, which contradicts the fact that x((HA)tl) > 2. Hence,
(H ‘)t" is intersecting and the claim holds. Therefore, by Definition 4.49
and Theorem 4.59, H™ is strongly intersecting. Finally, observe that
X(H)'") =x((H2)") >2.m

Corollary 4.80 Suppose H is a nontrivial ordered fuzzy hypergraph which
satisfies (4.59). Then both H™ and H® are strongly intersecting.

Proof. By Theorem 4.79, H~ is intersecting. Thus by Theorem 4.75, H2
is intersecting. Since H* is ordered, H? is strongly intersecting. I

Corollary 4.81 Suppose H is a fuzzy hypergraph. Let T, be the largest
member of F(H) and

Tr(H) = Hl,,, (4.60)

Then, both H and H*® are strongly intersecting.

Proof. Suppose (H®)™ has order > 2, where (H*)™ € C(H®). By the
first argument presented in the proof of Theorem 4.79, we see that con-
dition (4.60) implies Tr((H*)™) = (H*)™. Thus since (H*)"' is simple
by construction, and since n((H*)™') > 2 by assumption, it follows from
Theorem 4.72 that x((H*®)™) > 2. Accordingly, in conjunction with state-
ment (4.60) or its combination with the fact that Tr(H*) = Tr(H), the
argument used to prove the claim that every core hypergraph (H~)% of
C(H™) is a crisp intersecting hypergraph stated in the proof of Theorem
4.79 is sufficient in the present situation to verify that both H and H* are
strongly intersecting.

Suppose (H*®)™ has order 1. Then the only edge in (H*)™ is a loop,
say, E = {z}. Therefore H°|,, is a spike o, with support {z} and height
1 = h(H). Consequently, in view of statement (4.60), F intersects all
edges of each core hypergraph H™5 € C(H). Thus, the edge set of each
H™ € C(H) is a “star” with common vertex z. By the construction of
H?, it follows that the edge set £(H®) = {0,}. Hence, both H and H*
are L-intersecting and, therefore, strongly intersecting fuzzy hypergraphs
according to Definition 4.49 and Theorem 4.59. B
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Theorem 4.82 Suppose H is a nontrivial simply ordered fuzzy hypergraph.
Let t, be the largest member of F(H™) and (H™)® € C(H™). Then
Tr(H™) = HA|, if and only if H is essentially intersecting and x((H‘)t‘)
> 2.

Proof. Suppose that H is essentially intersecting and x((H ')t‘) > 2. By
assumption, H~ is intersecting (see Definition 4.51). Therefore, since H
is ordered, it follows from Theorem 4.75 that H® is intersecting. Since
x((H)") > 2, it now follows from Theorem 4.73 that Tr(H™) = H2|,,.
Conversely, suppose Tr(H~) = H2|;,. Then, by Theorem 4.49, H~ is

intersecting and x((H~)") > 2.1

Theorem 4.83 Suppose H is a simply ordered fuzzy hypergraph. Let ry
be the largest member of F(H) and (H®)"' € C(H®) and let the order
of (H®)" > 2. Then Tr(H) = H?|.,if and only if H is intersecting and
x(H™) > 2.

Proof. The proof follows from Theorem 4.77 and Corollary 4.81. In
particular, Corollary 4.81 together with the property that T'r(H) = H*|,,
imply that H is intersecting. The hypothesis of Theorem 4.77 now holds
and so that x(H™) > 2. Hence the forward implication is established. The
converse implication follows at once from Theorem 4.77. l

H-dominant Transversals

The concept of a H-dominant fuzzy subset, introduced in Definition 4.57
below, plays a fundamental role in this section, especially Theorems 4.86
and 4.88 and Corollary 4.87. Theorem 4.88 is used in the proof of Theorem
4.90. This latter theorem provides a characterization of all nontrivial fuzzy
hypergraphs, H, for which x(H) > 2.

Definition 4.57 Let H = (X.£) be a fuzzy hypergraph. A fuzzy subset
v € Fp(X) is said to be H-dominant if for every z € supp(v), v(z) =
V{u(z) | p € £}. An edge p of H is said to be a dominant edge of H if it
is H-dominant.

Note that every member of a fuzzy coloring, I, of H (see Definition 4.43)
is a H-dominant fuzzy subset.

Definition 4.58 Suppose H = (X,€) is a fuzzy hypergraph and let v €
F0(X). Then the H-dominant transform of vy, denoted by v (or, simply
P ), is defined by

4P(H) (z) = { E)/{u(x) |ne&} zft Zeivztgf(v),
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Let K= {71, ..., Ym} € §p(X). Then the H-dominant transform of K,
denoted by KP™) 45 defined by KPH) = {4200 P00y

We some time write K2 for KP™) and vP for y2 i =1,2,....m.

Lemma 4.84 (Berge [1]). Suppose H = (X,E) is a crisp intersecting hy-
pergraph with an edge E # X, which does not properly contain another edge
except possibly for loops. Then, for everyy € E, {X \ E, E\ {y}, {y}} s
a 3-coloring of H. M

Note that empty colors are acceptable in k-colorings of H. This is the
case for color E '\ {y} when E is a loop.

Theorem 4.85 Let H = (X,£) be a nontrivial, essentially strongly inter-
secting fuzzy hypergraph and let C(H™) = {(H =) t; e F(H™)}. Suppose
there is an edge v of H™ with the following properties:

(1) h(v) = h(H"),
(2) (WP £ (X™)9 (= V((H™)"Y)) for ali t; € F(H™),

(3) for each t; € F(H™) no pu¥ € E((H™)")\ v5 is properly contained
in (VP

Then, x(H) < 3.

Proof. Assume without loss of generality, that V(H~) = X and let v be
an edge of H~ with the above-mentioned properties. Let y € supp(v) be
such that v(y) = h(H™). Then P = {X\ supp(v), supp(¥) \ {v}, {y}} isa
partition of X into three non-empty subsets by property (2) and the fact
that v cannot be a spike since v € E(H™).

We claim that I’ = {y,, v,, 73}, where

N(e) = { yule) [WEET) i 2 € X \supp(v),
Yo(z) = { B/{#(r) lne€} ;ft;efwsit;ep,p(w \{v},

is a fuzzy coloring of H~ and £~ is the fuzzy edge set of H~.

For each t; € F(H™), let

(H7)” = ((X7)”, (B7)Y),
where (E™)" = {(E((H™)¥) \ v%) U WP )5}, Clearly (H™)™ is in-
tersecting and, in view of property (1), (WP 7))t £ @ for all t; € F(H™).
These properties together with properties (2) and (3) together with the
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choice of y specified earlier imply, acoordmg to Lemma 4. 84 that the re-
striction of P, namely I's, to (X~)% is a coloring of (H~)".

Smce y ¢ v C (uD(H Nt it is clear that I'*s is also a coloring of
(H- ) ; this completes the proof of the claim. Thus, x(H™) <3.

Suppose that H~ exists. Since x(H™) = x(H), it follows that x(H) <
3.m

By Definition 4.58, TP(H) = {rP | r € T(H)} is the set of H-dominant
fuzzy transversals of H.

Definition 4.59 A nontrivial fuzzy hypergraph H is said to be essentially
ordered if H™ is ordered.

Note that if H is nontrivial and ordered, then H is essentially ordered;
however, even when H is nontrivial and not ordered, H may, in some cases,
be essentially ordered.

Theorem 4.86 Let H = (X,£) be a nontrivial essentially ordered fuzzy
hypergraph. Then x(H) = 2 if and only if there is a H™ -dominant fuzzy
transversal of H~ which does not contain an edge of H™.

Proof. Since H is nontrivial (see Definition 4.55), H™ exists.

Suppose that x(H) = 2. Since x(H~) = x(H) = 2, there exists a fuzzy
bi-coloring {7, 7} of H~. Therefore, for every t; € F(H~), both 7% and 7%
intersect every edge of (H~)" € C(H~) since (H~)" contains no loops.
Every member of a fuzzy coloring of H™ is a H~-dominant fuzzy subset by
the note following Definition 4.57. Hence it follows that 7 and 7 belong to
TP(H~) and 7N7 = 0. Hence, 7 and 7 are a disjoint pair of H~-dominant
transversals of H~, neither of which contain an edge of H™.

Conversely assume there is a H~-dominant fuzzy transversal, 7, of H™
which does not contain an edge of H~. Let X~ = V(H™), the vertex set
of H~. Then X~\ supp(7) # @ for otherwise 7 contains all edges of H™
since 7 is H~-dominant.

Let 7 be the H~-dominant fuzzy subset with supp(7) = X\ supp(7)-
Since T is H~-dominant and contains no edge p € H™, it follows that
supp(p) € supp(7) for every p € H~. In addition, since 7 is a transversal
of H~, supp(p)N supp(7) # @ and supp(p)N supp(r) # @ for all
€ H—. Hence, 7t and 7= are transversals of (H~)"™ € C(H™), where
tm is the smallest member of F(H™).

Since H~ is ordered, E((H~)%) C E((H~)'™) for all (H~)" € C(H").
Therefore, since 7~ € T((H~)"™) and 7 is H~-dominant, it follows that,
for every t; € F(H™), 7% intersects all edges of (H -)% € C(H~). Hence
e TP(H).
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Consequently, {7,7} is a fuzzy bi-coloring of H~. Thus, x(H™) = 2.
Since x(H) = x(H ™), we have that x(H) =2. B

We state the contrapositive of Theorem 4.86 in the next corollary because
of its usefulness.

Corollary 4.87 Let H be a nontrivial essentially ordered fuzzy hypergraph.
Then x(H) > 2 if and only if every H™-dominant fuzzy transversal of
‘H~ contains an edge of H™.

Theorem 4.88 Let H = (X,£) be a nontrivial essentially ordered fuzzy
hypergraph. Then x(H) > 2 if and only if TP(H™) is intersecting.

Proof. Suppose x(H) > 2. By Corollary 4.87, each member 7’ of T2(H ™)
contains an edge, p’, of H~. For every member, 7, of TP(H™), TNy’ # 0;
therefore, 7 N 7' # O for every pair of members {7,7'} in TP(H").

Conversely, suppose x(H) = 2. Then it follows from Theorem 4.86 that
there is a member 7 € TP(H~) which does not contain an edge of H™.
Therefore, since 7 is H~-dominant, supp(7) cannot contain the support of
any fuzzy edge of H~. Thus, X ~\ supp(7) intersects the support of every
fuzzy edge of H~, where X~ = V(H™), the vertex set of H~.

Let T be the H~-dominant fuzzy subset with supp(7) = X\ supp(T).
Clearly, 7 intersects every edge of H~. Now, by repeating an argument
found in the proof of Theorem 4.86, it follows that ¥ € TP(H~). Since
7N7 =0, {T,7} is a disjoint pair of members in TP(H~). Hence TP(H"™)
is not intersecting. W

Recall that TP(H) = {72 | 7 € T(H)}, TrP(H) = {+P | T € Tr(H)},
and supp(H) = {supp(x) | 1 € H}.

Lemma 4.89 Let H be a fuzzy hypergraph. Then the following conditions
are equivalent.

(1) TP(H) is intersecting.

(2) T(H) is intersecting.

(8) Tr(H) is intersecting.

(4) TrP(H) is intersecting.
Proof. It has previously been shown that every member of T'(H) contains a
member of T'r(H); moreover, Tr(H) C T(H). Thus, conditions (2) and (3)
are equivalent. From Definition 4.48, we see that supp(T(H)) is intersect-

ing if and only if supp(Tr(H)) is intersecting. Moreover, supp(T?(H)) =
supp(T(H)) and supp(TrP(H)) = supp(Tr(H)). Thus, supp(T°(H)) =
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supp(T(H)) is intersecting if and only if supp(Tr(H)) = supp(TrP(H)) is
intersecting. The property

‘H is intersecting <> supp(H) is intersecting
and the preceding statement establish the following chain of equivalences:

TP(H) is intersecting <> T(H) is intersecting <> T(H) is intersecting
& TrP(H) is intersecting. W

For our next result, it is useful to recall the following properties of a
nontrivial fuzzy hypergraph H :

(i) x(H) = x(H") = x(H?),

(ii) Tr(H™) = Tr(H®).

Condition (ii) follows from Theorem 4.25 where it is shown that for
every fuzzy hypergraph H, Tr(H) = Tr(H?®). Thus, since H® = (H™)?,
(ii) holds. By properties (i) and (ii) stated above together with Theorem
4.88 as applied to H2, which is ordered, and Lemma 4.89, the following
theorem will be established.

Theorem 4.90 For every nontrivial fuzzy hypergraph H, x(H) > 2 if and
only if Tr(H™) is intersecting.

Proof. Since H is nontrivial, H~ and H* exist. Moreover, x(H) > 2 &
x(H?) > 2

& TP(HA) is intersecting (by Theorem 4.88 applied to H2)

& Tr(HA) is intersecting (by Lemma 4.89)

& Tr(H7™) is intersecting (by property (ii)).

Note that the application of Theorem 4.88 to H® is permissible since
HA is nontrivial and ordered. Also note that the spike reduced fuzzy hy-
pergraph, (H2)~, of H® remains H~. B

Lemma 4.91 If H is a crisp hypergraph with no loops (i.e., no singieton
edges), then x(H) > 2 if and only if Tr(H) is intersecting.

Proof. We have that

x(H) = 2 & some transversal of H does not contain an edge of H.
(4.61)
In fact, since H has no loops, the two colors of any bi-coloring of H must
be a pair of disjoint transversals of H neither of which contains an edge of
H. On the other hand, if T is a transversal of H which covers no edge of H,
then TV = V(H) \ T is also a transversal of H and {7, 7"} is a bi-coloring
of H.

The contrapositive of (4.61) now follows: If H is a crisp hypergraph with
no loops then x(H) > 2 & every transversal of H contains an edge of H.
Finally observe that Tr(H) is intersecting if and only if every transversal
of H contains an edge of H. To establish this fact, observe that if some
transversal, T, of H does not contain an edge of H, then, since H has no
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loops, T = V(H) \ T is a transversal of H disjoint from 7. Now if every
transversal, T, contains some edge E of H, then as every transversal, T”,
of H must intersect E, TNT’ # () for every pair {T,T"}, of transversals of
H R

Note that Lemma 4.91 does not hold if H has a loop {z} for then every
transversal of H contains z and so Tr(H) is intersecting irrespective of the
value of the chromatic number x(H).

Theorem 4.92 For every nontrivial fuzzy hypergraph H, Tr(H™) is
strongly intersecting if and only if x((H™)") > 2, where (H~)" € C(H")
and t is the largest member of F(H™).
Proof. Since H is nontrivial, H~ exists, and the crisp hypergraph, (H ')tl ,
has no looPs. Therefore, by Lemma 4.91,

x(H7)')>2& Tr((H‘)t‘) is intersecting.

It has previously been shown that the tog cut 78 of every minimal
transversal T € Tr(H™) belongs to Tr((H~)""). Therefore, Tr((H™)")
is intersecting => Tr(H™) is strongly intersecting.

On the other hand, every member of Tr((H~)") is the top cut of some
member of Tr(H~). Hence, Tr(H ™) is strongly intersecting = Tr((H~)")
is intersecting. M

4.5 Hebbian Structures

In [14, Ch. 4], Hebb describes collections of neuronal cell-assembles. In
9], Goetschel demonstrates how a collection of such cell-assembles can be
constructed as the edges of a fuzzy hypergraph. Hebb explains that cell
integration is dependent upon Lorente de N6’s thesis [23] which states that
a cell is generally fired non-spontaneously by the simultaneous activity
of two or more afferent fibres. Consequently cell assemblies can develop
rather specifically through experience with respect to an adaptive under-
lying neural network.

Cooperation of cells through assemblies is essential within Hebbian analy-
sis. The degree of membership of each cell within an assembly is depen-
dent, in part, upon the strength and complexity of the cell’s (pre and post)
synaptic connections with other component calls of the assembly. Thus,
identifying cell assemblies as fuzzy edges requires that the degree of mem-
bership within a given edge be variable.

Consider a cell assembly as a single “conscious content”, for example, the
recognition of an angle of a triangle (see [14, p. 74, p.84]). The conceptu-
alization of the entire triangle would require the integration of several cell
assemblies which together would form the edge set of a fuzzy hypergraph.
Hebb identifies the resultant of the integration process as a phase sequence.
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An explanation in [9] supports the premise that a phase sequence is a
useful schema to support a fuzzy organization which comprises a set of cell
assemblies that forms the basis for recognizing the relevant parts of the
whole together with a family of fuzzy sequencings of the parts according
to emerging or established programs of motor activities.

By combining the activations of {a;, a3, a3} into a temporal sequence
with repetition Hebb defines a simple execution of a phase sequence which
is to be construed as a primary step in the recognition of triangle A A,,
A2, As. For example, suppose a; if activated first (by fixation upon A4,).
Central activity in a; triggers the arousal of two motor activities of which
one becomes liminal causing eye movement. Consequently suppose the eye
then fixates upon A3. Then a3 becomes aroused through the interfacili-
tation of sensory activity from Az and central activity (induced from a;)
and so on. The phase sequence might then continue on to form a temporal
sequence of central activity such as a; —a3 —az —az —as —a; —ag —.

As suggested earlier, the cell assemblies in a phase sequence make up
the edge set of a fuzzy hypergraph H = (U,E), where U represents a set
of cells and each edge e; of £, j =1,..., n, corresponds to a given cell as-
sembly in the sequence. Communication between cell assemblies mediated
by the motor neurons associated with the assemblies of the phase sequence
determine a corresponding “order” fuzzy hypergraph, denoted O(H), on

Xnxn =1{L,...,n} x{1,..., n}
with n edges O(€) = {o1, ..., on}, where the support of o, is a subset of

{4} x{1,....n}, 5=1,...,n

It is understood that the degree of membership of (7, &) in o; is deter-
mined by the degree to which activation of edge e; can impose activation
upon the edge e,. It is suggested here that the Hebbian phase sequence P.S
be interpreted through, or correlated with, the pair of fuzzy hypergraphs:

PS = {H,O(H)}.

Dialogue between H and O(H) can follow fuzzy logic rules.

Hebb [14, p.35] likens a phase sequence to a “chain of cortical events
with motor links.” However, other facilitations between cell assemblies,
may eventually develop which may play a significant role in the perception
of a gestaltic whole, call it ¢, which may emerge (sometimes fleetingly) from
the processing of a phase sequence. Hebb remarks in [14, pp. 98-99], “When
the assembly ¢ [the whole (triangle)] has become organized, psychological
evidence indicates that its activity intervenes between the activities of the
subordinate assemblies ay, a2, and a3 and does not supersede them. Thus
the sequence becomes something like

a3 —ay—t—ay —az—t—az—t—azx-."

Suppose the activity of assembly ey frequently follows activity of e; in the
execution of phase sequence PS; then, in time, the sequential activity e; —ex
may produce a fuzzy collection of (axon, soma) pairs, where the axons and
somas belong, respectively, to cells in e; and e;. More specifically, suppose
the phase sequence with cell assemblies {e;, eo, ..., e, } corresponds to some
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simple geometric figure. We may suppose the individual strengths of the
(axon, soma) connections between e; and ej are not especially significant
(i-e., weak) when compared to the average strength of the inner connections
within either assembly e; or e, this is assuming, of course, that the macular
field of vision is probably not significantly enjoined in the development of
these interconnections between assemblies; this should be contrasted with
the dominant role the macular field of vision must play in stimulating the
development of the various assemblies, e;, e; through e,, of the phase
sequence.

The set of (axon, soma) pairs associated with each ordered pair (j,k) €
I, x I,, where j # k and I, = {1, 2,..., n}, generates a detailed fuzzy
hypergraph on U x U, where U = V(H), called the histologic-order fuzzy
hypergraph of PS. Each edge (j,k) consists of those (axon, soma) pairs
generated from the serial activity of the subsequence e; —e; in PS; strength
of membership is determined by the strength of association between the
afferent axon and the postsynaptic soma (on a scale from zero to one).
Notationally, if PS = (H, O(H)), the corresponding histologicorder fuzzy
hypergraph is denoted by ©(H); thus when considerable detail is required

S = (H,0(H), ©(H)).

Early learning is a period of time when sensory control within corti-
cal association areas slowly takes the form of structured phase sequences.
The formation of early phase sequences provides the foundation for later
learning when sensorial control over central associations relaxes in favor of
increasing intra-cortical convergences between phase sequences or between
groups of phase sequence complexes (related phase sequences organized
around a particular concept). Further explanation can be found in [9)].

Phase sequence complex organized by a particular precept or concept
permits attention to remain for longer periods of time on the concept (since
the complex permits longer periods of reverberatory excitation once acti-
vated). Thus the environment for insightful associations between concepts
represented by complexes is enhanced, especially when the only potential
links between concepts would initially be weak and subliminal.

The fuzzy hypergraph representation of PS can be adapted to repre-
sent phase sequence complex PSC. Let PSC = (H., O(H.)) be a fuzzily
organized structure of phase sequences:

{PS; = (H;,,O(H)) |i=1,..., m},
where H, is a fuzzy hypergraph developed from the collection {£(H;) |
it =1,..., m} and O(H,) is a particularly focused order hypergraph of
Hc. The intuitive idea here is to correspond the fuzzy edges of H. with
the edge sets, £(H;), of the fuzzy hypergraphs H;, i = 1,..., m, and to
identify the vertex set of H, with the collection of edges U 16’ (H,) In this
schema, the vertices play a dual role: on the one hand when it is reasonable
to do so they can be treated as “smeared” fuzzy points v, however, in their
formal role as vertices of H,. they should be treated as crisp points {v}
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(i.e., as singleton sets containing v); thus the vertex set, V(H,.), of M. is
formally defined by

VH) ={{v} |veEH), i=1,..., m}.

There is a bijective correspondence between the set of edges, £(H,), of H,
and the collection of edge sets:

{€(H;) | Hi is a fuzzy hypergraph representation of the cell assemblies of
phase sequence PS; in the PSC complex (H., O(H.))};

this is true, of course, under the tacit assumption that if i # j then
E(H;). In addition, there also exists a bijection between £(H.) and the
support set S(H,), of £(H.); i.e., the collection of subsets of V(H.) which
are the supports of the edges in £(H,.). The validity of this latter bijec-
tion follows from the above tacit assumption and the property that vertices
{v1} and {v2} are equal if and only if v, and v, represent the same fuzzy
subset. Indeed, the bijections are obvious since each member A; of S(H,)
satisfies

A; = {{vi;} | vij € E(Hi)}
where, it is assumed that

S(He) ={Ai|i=,...,m}.

Let o; denote the edge set in £(H,) with support A;, thus supp(a;) = A;
and, of course,

EMH:) ={ai|i=1,..., m}.

It is reasonable to assume that for each member {v;;} € A;, the de-
gree of membership, a;({vi;}), in a; should be derived from a fuzzy logic
evaluation which requires information from at least two sources:

(i) A fuzzy measure(ment) of the fuzzy subset v;;.

(ii) An evaluation of the degree of cohesiveness of edge v;; within H;,
determined by a fuzzy procedure based upon data obtained from the fuzzy
order hypergraph O(H;) of phase sequence PS;.

Transversal theory, especially fuzzy minimal transversal theory, is useful
in descriptive analysis of the basic phenomena: short-circuiting of phase se-
quences (or complezes). This is a fundamental phenomena within Hebbian
psychological analysis, an analysis based upon physiological properties of
neuronal structures. By definition, Hebb states [14, p. 228]:

“The reader will recall that the phase sequence is “recurrent” and
“anticipatory”, containing cyclical conceptual activities schematized as
A-B-A-C-B-D-E-F-D-FE-G-F-H,etc,
“Short-circuiting” might cut such a sequence down to
A—-B—-D-H, etc.
That is, (1) on repetition the sequence might touch only the high spots,
(2) after some synaptic knobs have deteriorated, however, (or, some cells
are in refractory state), D might be no longer able to arouse H directly -
only when E, F and G are also aroused.”

Hebb’s comments on cell assembly, as explained in [9], leads to a fuzzy
interpretation of short-circuiting. A cell assembly can be treated like a
collection of indivisible modular components, each component acting as a
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functional unit, an organized collection of cells operating as a transmission
unit. One can assume that, once established, an effective transmission unit
of simple complexity would tend to be a functional unit in several related
cell assemblies as they occur in phase sequences.

This speculation suggests as alternative model for phase sequence PS =
(H,O(H)). We construct a modified pair of fuzzy hypergraphs, denoted
(Hp,O(Hp))- The supports of the functional units derived from the edges
e € £(H) constitute the vertices of the vertex set V(Hp) of Hp. The func-
tional units are recognized as directed linear subchains contained within
edges of H; generally, after PS is reasonably well-established, it will be
presumed that the members of a chain have equal degrees of membership
within any specific containing edge; however, the strength of a chain may
vary between any two containing edges of the chain. Hence, the edge set,
E(Hp), of Hp represents the edges of £(H) when viewed as fuzzy assem-
blies of elementary functional units - as fuzzy subsets of V(Hp). Clearly,
O(Hp) = O(H); however, the realization of the histologic-order fuzzy hy-
pergraph, ©(Hp), of Hp would require some computational effort, perhaps
by a fuzzy logic procedure utilizing data from both ©(H) and Hp.

More ideas concerning the relationship between Hebbian structures and
fuzzy hypergraphs can be found in [9]. Recent material that supports neu-
rophysiological assumptions made by Hebb appears in the interesting work
of Lynch, [24], with commentaries by G.M. Shepherd, I.B. Black and H.P.
Killackey.

4.6 Additional Applications

In this section, we introduce some concepts such as the strength of an
edge, the span of a fuzzy hypergraph and the dual fuzzy hypergraph. The
material is from [22]. It is stated in [22] that proposed concepts can be used
in system analysis, circuit clustering and pattern recognition, etc. [20 - 22].

In general , a family {4, Az, ..., Am} of nonempty subsets of a set X is
called a partition of X if the following conditions are satisfied.

ir—ljl Ai =X,

AiNA;=0,4,5=1,...,m@E #j)

If the family {4, A4,..., A} allows A; N A; # 0 for i # j, it is called a
covering (or cover) of X.

A fuzzy partition of set X is a family {u,, #s,..., #,,} of nonempty
fuzzy subsets of X such that

m
U supp(p;) = X (4.62)

f: pi(z)=1,vz e X (4.63)

=1
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We call a family {y;, #o, .-, i} & fuzzy covering of X if it satisfies only
the above condition (4.62), but not (4.63).

Let H = (V,E) be a hypergraph, where X = {z4,...,2,} and E =
{E:,...,Em}. Two verticesz and y of H are said to be adjacent if there
exists an edge E; which contains z and y. Two edges are said to be adjacent
if their intersection is not empty. The degree of verter x is the number of
edges which contain the vertex (|{E; | z € E;}|). The incidence matrix of
the hypergraph H is a matrix My = (@ij)nxm With m columns representing
the edges and n rows representing the vertices, where the elements a;; are
as follows:

P 1 if x; € Ej

v 0 if X; ¢ Ej

For example, consider a hypergraph H = (V| E) such that

V= {IB],I2,I3,.’L’4,$5}

E = {E;, Es, E3}

Ey = {z1,72}, By = {z2,23,24}, E3 = {z4,25}.

The hypergraph can be described by its incidence matrix as follows:

E, E, E3
T 1 0 0
) 1 1 0
I3 0 1 0
Ty 0 1 1
Is5 0 0 1

In general, the edge set is a cover of X. In a hypergraph, if every vertex
has degree 1, i.e., E;NE; = ¢,% # j, the edge form a partition of X . A hyper-
graph H = (X, E) can be mapped to a hypergraph H* = (X" E*) whose
vertices are the points ey, ey, ..., e, (corresponding to Ey E, ..., Ep, re-
spectively), and whose edges are sets X1, X2,...,Xn (correspond.mg to
z,T2,..., T, respectively). Then

X;={ei|lzj€Eyi=1,...,m},j=1,...,n,

X # &

UX X* ={e1,e2,...,em}

The hypergraph H* is called the dual hypergraph of H. The incidence
matrix (aij)nxm of the hypergraph H and that (b;j)mxn of the dual hyper-
graph H* are transposed matrices of each other , i.e.,(ai;)Zym = (bij)mxn-
Thus we have (H*)* = H. If two vertices z; and «; in H are adjacent, the
edges X; and X; in H* are adjacent. Similarly, if two edges E; and E; in
H are adjacent, two vertices e; and e; in H* are adjacent. We can obtain
the following dual hypergraph H* of the hypergraph H given in the above
example.

H* = (X*E*),

X* = {e1,e2,e3} and E* = { X, X2, X3, X4, X5}, where

X1 ={e1}, X2 = {e1,e2}, X3 = {ea}, X4 = {e2, €3}, X5 = {e3}.
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TABLE 4.1 Incidence matrix.
H o m r #3
z; 08 O 0
2 05 05 O
3 0 1 0
zg 0 08 08
Ty 0 0 1

The incidence matrix of the hypergraph H™ is as follows:

H X; Xo X3 X4 Xs
e 1 1 0 0 0
e 0 1 1 1 0
e3 0 0 0 1 1

Given a hypergraph H = (X, E), we associate a graph G = (X, F), called
the corresponding graph as follows. For any two vertices z,y € X, there is
an edge between z and y if and only if there exists at least one E € E such
that z,y € E. In other words, F = {(z,y) | 3F € E,z,y € E}. In general,
the corresponding graph is a multigraph. The corresponding graph G of the
hypergraph H given above is as follows.

G=(X,F)

X = {131,12,.’173, 134,.’175}

F= {(11,1‘2), (1'23 123), (172, 174), (333,174), (‘T‘h J:5)}

In the corresponding graph there are three maximal cliques {z;,z2},
{$2,$3,1¢4}, and {$4,I5}.

Consider a fuzzy hypergraph H = (X, &) where X = {x,x2,z3, 74,5}
and £ = {p,, 4o, 3} described by the incidence matrix given in Table 4.1.

In a fuzzy hypergraph, we define the adjacent level between two vertices
or between two edges as follows:

adjacent level v between two vertices z and y (z # y) is defined by

7(1"-7/) = V{ﬂj(l’) Ay‘j(y) I] =1,... :m}'

adjacent level o between two edges u; and p, is defined o(u;, ) =
V{n;(x) A pe(z) | = € X}

In the above fuzzy hypergraph, the adjacent level y(z;, z2) between ver-
tices z; and z3 is 0.5, and the adjacent level o(p,, p5) is 0.5.

Let ¢t € [0,1]. Define pf,,, = {z € X | p;(x) < t,Vj =1,...,m}. The
edge puf, ., is added to the set of edges of M.

For example, at ¢ = 0.8 for the fuzzy hypergraph H given above, hyper-
graph H%#8 is given by its incidence matrix M is as follows. In the 0.8-cut
hypergraph H%8, a new edge u$-® added to contain the element z.
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0.8

08 (1).8 g.s
T
T2
x3
2
s

O m = O O0OT%

38
0
0
0
1
1

SO OCO-=Tx
OOO!—IOE

We have seen that the support of a fuzzy edge in a hypergraph corre-
sponds to a clique in the corresponding ordinary graph. Therefore, the edge
198 in the hypergraph 12 represents the clique {z4,z5}. Again, the edge
and the clique correspond to the class in the clustering (partition).

We now consider the strength of an edge.

We see that some edges contains only vertices having high membership
degree. For example, in the fuzzy hypergraph H given above, the edge
supp(uz) contains the vertices having membership at least 0.8. On the
other hand, supp(z,) has vertices having membership at least 0.5. We can
state that the cohesion in p5 is stronger than in p,.

Therefore we define the concept of strength of a fuzzy edge. The strength
B of a fuzzy edge p; is the minimum membership p;(z) of the vertices. That
is, B(p;) = NMu;(z) | = € supp(p;)}. Its interpretation is that the fuzzy
edge p1; groups elements having participation degree at least ﬂ(p.j) in the
hypergraph.

For example, in the fuzzy hypergraph H given above, the strength of
each edge is B(y;) = 0.5, B(py) = 0.5 and B(p3) = 0.8 respectively. In
the example, the edge p; is said to be stronger than u; and pu,, since
B(rs) > B(k,) and B(uz) > B(pg). If we assign G(p;) as the membership
degree for all z; such that p;(z;) > 0, we obtain a fuzzy hypergraph which
represents the subsets with grouping strength or the cohesion hypergraph.

B Bz B
z, 05 0 0
zz 05 05 0
zz 0 05 0

zg 0 05 08

We have seen that we can associate an ordinary graph with a hypergraph.
A hypergraph can be mapped to a clique(subgraph) in the graph. Similarly,
a fuzzy graph can be associated with a fuzzy hypergraph. In this case, a
fuzzy edge with its strength 3 in the fuzzy hypergraph is mapped to cligue
in the fuzzy graph; all the edges in the clique have the membership degree
B. The B;,i = 1,2,3, give the corresponding fuzzy graph to the fuzzy
hypergraph H. In the graph, the number attached to the edges represent
the membership degree.

We now introduce the concept of a dual fuzzy hypergraph for a fuzzy hy-
pergraph. Given a fuzzy hypergraph H = (X, £), where X = {z1,22,...,Zn}
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TABLE 4.2 Dual fuzzy hypergraph.

Mw- x1 X2 X3 Xa Xs
e 08 05 O 0 0

e 0 05 1 08 O
e3 0 0 0 08 1

TABLE 4.3 0.8—cut hypergraph.

Mpqey08 X8 88 X328 308 408
e 1 0 0 0 0
e 0 0 1 1 0
e3 0 0 0 1 1

and £ ={u,, o, - -, M}, its dual fuzzy hypergraph H* = (X*;£*) is de-
fined as follows:

X* = {e1,€2,...,em} : set of vertices corresponding to p, fto, - - .,
respectively.

E* ={X1,X2,-- -1 Xn} : set of hyperedges corresponding to z1,z3,...,Zn
where

Xi(ej) = #j(xi)ii = 112) te )n;j = 1w27' <., M.

For example, consider the fuzzy hypergraph H of H. Its dual fuzzy hy-
pergraph H* is as follows H* = (X*,&*), where X* = {e;,ez,e3} and
" ={x1,Xa:---»Xs}- Its incidence matrix is as given in Table 4.2.

Now, let’s cut the fuzzy hypergraph H*at level 0.8. The 0.8-cut hyper-
graph (H* )0'8 is obtained by the incidence matrix M(;.yo.s given in Table
4.3.

From the hypergraphs H%8 and (H*)*® , we can see that the dual hyper-
graph of H%38 is not equal to ('H‘)O'B . That is, the commutativity property is
not satisfied between the ¢-cut operation and the dual operation. However,
if the following conditions are satisfied, then the commutativity property
is satisfied.

For H = (X, ¢£),

Vz; € X, 3 u; such that p.(7) > ¢,

Vu; € €,3zy such that u, (k) >t.

That is, when f; is a function which cuts a fuzzy hypergraph at level ¢
and g is a function generating the dual hypergraph of a hypergraph, the
composition of the two functions f; and g is commutative under the above
conditions as follows:

fi:H—> H?

g:H—-H"

fi(H)=H*

g(Ht) = (H*)*

g(H) =H*

fo(H*) = (H*)'
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TABLE 4.4 Fuzzy partition matrix.

H T ¥
z; 096 0.04
o 1 0
z3 061 0.39
4 005 0.95
zs 0.03 0.97

TABLE 4.5 Hypergraph 16!
HO61

T
I 1 0
Io 1 0
T3 1 0
T4 0 1
Is 0 1

goft="ftog

A fuzzy partition can be represented by a fuzzy matrix (aij) where a;;
is the membership degree of element z; in class j. We see that this matrix
can be considered as the incidence matrix of a fuzzy hypergraph. Thus
we can represent a fuzzy partition by a fuzzy hypergraph H = (X, )
where X = {z1,%2,...,Zn}, & ={p1, 0, - -t} (15 #0,5 =1,2,...,m)
and 30 a;; = 1,4 = 1,2,...,n, for ai; = py(z:), i = 1,2,...,n5j =
1,2,...,m.

Note that the last condition is added to the fuzzy hypergraph for fuzzy
partitions. If the last condition is eliminated, the fuzzy hypergraph can
represent a fuzzy covering. Naturally we can apply the t-cut to the fuzzy
partition.

Let’s consider an example of clustering problem given in [3]. The problem
a is typical example of a fuzzy partition in visual image processing. There
are five objects and they are classified in to two classes: tank and house. To
cluster the elements z;, x5, 23, 24, 75 into 7 (tank) and v (house), a fuzzy
partition matrix is given as the form of an incidence matrix in Table 4.4 of
a fuzzy hypergraph as in [3].

We can apply the t-cut to the fuzzy hypergraph and obtain a hypergraph
H! which is not fuzzy. Let’s denote the edge(class) in the t-cut hypergraph
H* as A%. This hypergraph H* represents generally a covering because
the condition ), u;(z) = 1, Vz € A} is not always guaranteed . The
hypergraph H%6! is shown in Table 4.5.

We can obtain the dual hypergraph (H*)*®! of 196! as follows (Table
4.6).
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TABLE 4.6 Dual fuzzy hypergraph.
M) X X X3 Xi Xs
T 1 1 1 0 0
Y 0 0 © 1 1

Let’s consider the strength of edge(class) A% in the t-cut hypergraph H*.
It is necessary to modify the definition of strength to obtain the strength
of edge A% in H* as follows: B(A%) = A{as; | i such that z; € A%}

The possible interpretations of 3(A%) are:

1. The edge (class) in the hypergraph (partition) H* groups elements
having at least 8 membership, the strength (cohesion) of edge (class)
A in H! is 8. Thus we can use the strength as the measure of the
cohesion or the strength of the class in the partition. For example, the
strengths of classes 706! and 726! at ¢t = 0.61 are 3(r%€!) = 0.61.
B(v%6!) = 0.95. Thus we say that the class 76! is stronger than
70-61 because B(7%6!) > B(796). From the above discussion about
the hypergraphs #%¢! and (H* )>®1 | we can state that:

2. The fuzzy hypergraph can represent the fuzzy partition visually. The
t-cut hypergraph also represents the t-cut partition.

3. The dual hypergraph ('H')O'61 can represent the elements X; which
can be grouped into a class A;. For example, the edges X;, X2, X3 of
the dual hypergraph in Fig. 11 represent the elements z,, x5, 3 that
can be grouped into ¢ at level 0.61.

4. In the fuzzy partition, we have Y °_, p;(z) = 1,z € X;. If we t-cut
at level ¢ > 0.5, there is no element which is grouped into two classes
simultaneously. That is if ¢ > 0.5, every element is combined in only
one class in H!. Therefore, the hypergraph H! represents a partition
(if t < 0.5, the hypergraph may represent a covering).

5. At t = 0.61 level, the strength of class 76! is the highest (0.95),
so it is the strongest class. Hence this class can be grouped indepen-
dently from the other parts. Thus we can eliminate the class v from
the others and continue clustering. Therefore the discrimination of
strong classes from the others can allow us to decompose a clustering
problem into smaller ones. This strategy allows us to work with the
reduced data in a clustering problem.

In 1982, Pawlak introduced the concept of rough set, [30]. This concept
is fundamental to the examination of granularity in knowledge. It is a con-
cept which has applications in data analysis. The idea is to approximate
a subset of a universal set by a lower approximation and an upper ap-
proximation in the following manner. A partition of the universe is given.
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The lower approximation is the union of those members of the partition
contained in the given subset and the upper approximation is the union of
those members of the partition which have a nonempty intersection with
the given subset. This framework provides a systematic method for the
study on intelligent systems characterized by insufficient or incomplete in-
formation. It is well known that a partition induces an equivalence relation
on a set and vice versa. The properties of rough sets can thus be examined
via either partitions or equivalence relations. The members of the partition
(or equivalence classes) can be formally described by unary set-theoretic
operators, [37], or by successor functions for upper approximation spaces,
[18,19]. This axiomatic approach allows not only for a wide range of areas
to be used to describe rough sets. Some examples are topology, (fuzzy) ab-
stract algebra, (fuzzy) directed graphs, (fuzzy) finite state machines, modal
logic, interval structures, [18,28,31,37,38,39]. The requirement of a parti-
tion (or equivalence relation) seems to be a stringent condition that may
limit the application domain of the rough set model. To resolve this prob-
lem, many proposals have been made, [28,33,34,35,39], one of which is the
replacement of a partition of the universe by a cover of the universe. Con-
sequently the properties of hypergraphs and fuzzy hypergraphs seems to
provide an untapped resource for rough set theory.

Let C be a cover of X. Define L, U : P(X) — P(X) as follows: VS €
P(X),

L(S)= U CandU(S)= U C.

cec cec
ccs CNS#0

Then L(S) is called the lower approzimation of S and U(S) is called the
upper approzimation of S. When C is partition of X, then strong properties
hold for L and U. This case has been studied extensively. The case where
C is not a partition has been examined less extensively.

In order to see a connection between hypergraphs and rough sets con-
sider the following result: Let H = (X,E) be a hypergraph. Let L and
U be defined on P(X) as above, where C = E. Then H is intersecting
implies VE € E,U(F) = X : H is intersecting < VE,E' ¢ E,ENE' # 0
= VE € E,U(F) = X. Let H = (X,E), where X = {1,2,3,4} and
E = {{1,2},{1,3},{2,4},{3,4}}. Then VE € E,U(E) = X, but H is
not intersecting.

We now consider fuzzy hypergraphs. Let H = (X, &) be a fuzzy hyper-
graph and let be a partition of X. Then P may be considered to be a.
primitive coloring or an L£—coloring of H. Define L,U : FP(X) — FP(X)
by Vup € €, _

L(p)(z) = Mu(2)lz € [¢]} snd T(w)(x) = V{u(2)\z € [a]}
for all x € X, where [z] is the equivalence class of z with respect to the
equivalence relation induced by P. It can be shown that the definitions of
L and U contain the crisp case, i.e., are those for L and U when the i image
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of p is {0,1}, [26]. With the definitions of L and U, we have a connection
between fuzzy hypergraphs and rough sets.
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(weak) vertex-isomorphism, 40
0-chain, 31

1-chain, 31, 36

absorbs, 137

acyclic, 22, 72

adjacency matrix, 45

adjacent, 222

aggregate hypergraph, 192, 204
antisymmetric, 2

arc, 113

basic elementary fuzzy subsets, 146
basic elementary join, 146
basic join, 146

basic sequence, 146
(-degree coloring, 182
By-degree, 179

B y-ordering, 183

B y-star, 179

bijection, 3

block, 22

Boolean matrix, 115
bridge, 21, 33

C-related, 178

Cartesian cross product, 2
Cartesian product, 62, 63
characteristic function, 4
chord, 32, 34

chordal, 51, 53

chromatic number, 173, 174
chromatic value, 194
circumscribed, 179

clique, 20, 47, 86

cluster, 86

coboundary, 31, 36
cocycle, 31

cocycle basis, 32

cocycle space, 32
cohesion hypergraph, 224
cohesiveness, 92

coloring, 171
complement, 51

complete, 20, 69

complete fuzzy tree, 75
components, 21
composition, 2, 5, 65
connected, 21

connected components, 21
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connectedness level, 72
connectivity, 88
connectivity matrix, 88
conservative coloring, 182
conservative

conservative k-coloring, 182
conservative L-coloring, 192
conservative ordering, 184
core hypergraphs, 137

core set, 137

core’s aggregate hypergraph, 192
corresponding graph, 223
cotree, 32, 34

countable, 3

cover, 14, 221

covering, 221

crisp edge set, 192

cut of the slicing, 93

cut set, 31, 32

cut-set, 91

cutvertex, 22

cycle, 20, 21, 25

cycle of length, 53

cycle rank, 32

cycle space, 31

cycle vector, 31

cyclomatic function, 73
cyclomatic number, 73

dead branch, 57

degree, 90

degree of cohesiveness, 220
degree of vertex, 222
dendogram, 99
determinate, 14

diameter, 21, 115

digraph, 113

directed edge, 113
directed line, 113
disconnected, 113
disconnection, 96

distance, 113

domain, 2

dominant edge, 212

dual fuzzy hypergraph, 224

dual hypergraph, 222

edge connectivity, 91
edges, 21
elementary, 136
elementary center, 195
elementary fuzzy hypergraph, 136
e-relation
similarity, 15
e-complete, 12
maximal, 12
e-determinate, 14
e-function, 14
e-productive, 14
e-reachable, 88
e-reflexive, 11
equivalence
equivalence, 9
equivalence relation, 2
essentially ordered, 214
essentially sequentially simple, 207
exceptional, 35

f-chromatic valuation, 195
filled, 179
finite-valued, 3
foot, 35
forest, 22
full fuzzy tree, 75
fully acyclic, 75
function, 2, 14
composition, 2
fundamental sequence, 45, 137
fuzzy 1-chain, 36
fuzzy bigraph, 69
fuzzy bridge, 33
fuzzy chord, 34
fuzzy clique, 49
fuzzy cluster, 86
fuzzy coboundary, 36
fuzzy cocycle, 36
fuzzy cocycle set, 36
fuzzy coloring, 194
fuzzy cotree, 34



fuzzy covering, 222
fuzzy cut set, 32
fuzzy cycle, 25
fuzzy cycle set, 36
fuzzy cycle vector, 36
fuzzy digraph, 45
fuzzy directed graph, 121
fuzzy edge set, 19
fuzzy forest, 22
fuzzy graph, 19
(weak) line isomorphism, 40
(weak) vertex-isomorphism, 40
O-chain, 31
1-chain, 31, 36
acyclic, 72
adjacency matrix, 45
block, 22
bridge, 21, 33
Cartesian product, 63
chord, 34
coboundary, 36
cohesiveness, 92
complete, 69
complete fuzzy tree, 75
composition, 65
connected, 21
connected components, 21
connectedness level, 72
connectivity, 88
connectivity matrix, 88
cotree, 34
cut set, 32
cut-set, 91
weight, 91
cutvertex, 22
cycle, 21, 25
cyclomatic function, 73
cyclomatic number, 73
dead branch, 57
degree, 90
diameter, 21
disconnection, 96
minimum weight, 96
weight, 96
edge connectivity, 91
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edges of a path, 21

e-reachable, 88

forest, 22

full fuzzy tree, 75

fully acyclic, 75

fuzzy 1-chain, 36

fuzzy bigraph, 69
complete, 69

fuzzy bridge, 33

fuzzy chord, 34

fuzzy coboundary, 36

fuzzy cocycle, 36

fuzzy cocycle set, 36

fuzzy cotree, 34

fuzzy cut set, 32

fuzzy cycle, 25

fuzzy cycle set, 36

fuzzy cycle vector, 36

fuzzy digraph, 45

fuzzy forest, 22

fuzzy intersection graph, 41

fuzzy spanning tree, 34

fuzzy tree, 23, 25

fuzzy twig, 35

h(e)-edge component, 92

initial e-connected, 88

intersection graph, 45

interval graph, 45

join, 68

length of a path, 20

line graph, 45

maximal strongly e-connected,

88

maximum degree, 90

minimum degree, 90

nonseparable, 22

path, 20

slicing, 93

cut, 93

minimal, 93

narrow, 93
spanning subgraph, 20
strength of a path, 21
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strength of connectedness, 21 fuzzy tree, 23, 25
strongly e-connected, 88 fuzzy twig, 35
T-degree component, 90 fuzzy vertex set, 19
7-degree connected, 90
7-edge component, 91 graph, 19
T-edge connected, 91 acyclic, 22
T-vertex component, 96 Cartesian product, 62
transitively orientable, 53 chord, 32
tree, 22, 25 clique, 20, 86
twig, 35 cluster, 86
union, 67 coboundary, 31
vertex forest matrix, 58 cocycle, 31
weakly connected, 72 cocycle basis, 32
fuzzy hypergraph, 136 cocycle space, 32
edge set, 136 complete, 20
elementary, 136 cotree, 32
elementary fuzzy hypergraph, cut set, 31
136 cycle, 20
fuzzy edge, 136 cycle rank, 32
height, 136 cycle space, 31
simple, 136 cycle vector, 31
spike, 136 forest, 22
support simple, 136 tree, 22
t-level hypergraph, 136 twigs, 32
fuzzy intersection graph, 41 union, 66
fuzzy interval, 47 walk, 20
fuzzy interval graph, 47
fuzzy number, 47 ‘H-dominant fuzzy subset, 212
fuzzy power set, 3 ‘H-dominant fuzzy transversals, 214
fuzzy relation, 4, 108 ‘H-dominan transform, 212, 213
composition, 5 H-related, 178
e-reflexive, 11 Hamiltonian path, 126
equivalence, 9 h(e)-edge component, 92
irreflexive, 11 height, 3, 45, 136
reflexive, 7 histologic-order, 219
strongest, 5 hypergraph, 135
symmetric, 7 edge set, 135
transitive, 8 simple, 135
weakly reflexive, 11 vertex set, 135
fuzzy singleton, 32
fuzzy spanning tree, 34 (4, ) member, 114
fuzzy subgraph, 19 identically H-related, 178
fuzzy subset, 3 image, 2
weakest, 5 induced, 20

fuzzy transversal, 141 injection, 2



intersecting, 199, 200
intersecting families, 199
intersection graph, 45
interval graph, 45
irreflexive, 11

isolate, 119

join of a fuzzy hypergraph, 154
k-coloring, 170

L-coloring, 171
L-intersecting, 200

Ajs-chromatic number, 197

Aj-chromatic valuation, 195

length, 20

level, 3

line graph, 45

linear chromatic number, 197

locally minimal fuzzy transversal,
142

loop, 113, 115

lower approximation, 228

lower truncation, 145

map, 2

mapping, 2

maximal strongly e-connected, 88

maximum [ y-degree, 179

maximum conservative coloring,
182

maximum degree, 90

minimal fuzzy transversal, 141

minimal slicing, 93

minimal transversal, 141

minimum [ y-degree, 179

minimum degree, 90

minimum weight, 96

u tempered fuzzy hypergraph, 139

narrow slicing, 93
neutral, 114
nodes, 113
non-trivial, 207
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nonseparable, 22
nontrivial, 3

one-to-one, 2

onto, 2

ordered, 138
orientation, 51, 53, 57
oriented graph, 126

p-chromatic number, 174
p-coloring, 170
partial fuzzy graph
connected, 21
partial fuzzy hypergraph, 137
partial fuzzy subgraph, 19, 40
strong, 68
partial hypergraph, 137
partial order, 2
partially ordered, 2
partition, 2, 221
path, 20
points, 113
post-extended 8, -ordering, 185
pre-extended G -ordering, 185
primitive k-coloring, 170
productive, 14

reachability matrix, 115
reflexive, 2, 7, 14
relation, 2

p-distance, 83

p-length, 83

scaling function, 195

sectionally elementary, 137, 145

sequentially identical, 178

sequentially simple, 168, 207

set of basic cuts, 146

set of edges, 205

short-circuiting of phase sequences,
220

simple, 135, 136

simply ordered, 138

skeleton, 159

slicing, 93
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cut, 93

minimal, 93

narrow, 93
spanning subgraph, 20
spans, 20
spike, 136

spike reduction, 175

stable L-coloring, 176

star, 179, 182

strength, 21

strengthening point, 114

strong, 68, 113

stronger than, 224

strongly connected, 113

strongly conservative k-coloring,
185

strongly e-connected, 88

strongly intersecting, 202

support, 3

support simple, 136

symmetric, 2, 7

symmetric matrix, 119

symmetrizing, 118

t-level hypergraph, 136
T-related, 150

t-cuts, 3

7-degree component, 90
7-degree connected, 90
T-edge component, 91
T-edge connected, 91
T-vertex component, 96
tournament, 126
transition level, 145
transitive, 2, 8
transitively orientable, 51, 53
transitively oriented, 57
transversal, 141

tree, 22, 25
triangulated, 51

twig, 35

twigs, 32

uncountable, 3
unilateral, 113

unilaterally connected, 113
union, 66, 67

universal relationship, 117
upper approximation, 228

upper truncation, 145

vertex forest matrix, 58
vertices, 113

weak, 113

weak fuzzy tree, 76

weakening point, 114

weakly connected, 72, 113

weakly conservative k-coloring, 184
weakly reflexive, 11

weight, 91, 96



